πDMD simulation as a strategy for refinement of AlphaFold2 modeled fuzzy protein complex structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Disordered proteins are of great interest due to their structural features, as they do not have well-defined three-dimensional structures. These proteins, often called intrinsically disordered proteins or regions, play critical roles in various cellular processes and are associated with the development of a number of diseases. Our in silico research focused on the investigation of protein complexes that include both the ordered protein, such as 14-3-3γ, and proteins with intrinsically disordered regions, such as nucleocapsid (N) of SARS-CoV-2 and p53. Our findings demonstrate that complexes modeled by AlphaFold2 and refined using discrete molecular dynamics simulations acquire assembled structures in disordered regions. After refinement, the modeled complexes exhibit a degree of structural assembly that addresses a key challenge in studying disordered proteins – their propensity to evade stable conformations.

Full Text

Restricted Access

About the authors

N. G. Muradyan

Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA)

Email: g_arakelov@mb.sci.am

Laboratory of Computational Modeling of Biological Processes

Armenia, Yerevan

A. A. Sargsyan

Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA); Russian–Armenian University

Email: g_arakelov@mb.sci.am

Laboratory of Computational Modeling of Biological Processes

Armenia, Yerevan; Yerevan

V. G. Arakelov

Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA)

Email: g_arakelov@mb.sci.am

Laboratory of Computational Modeling of Biological Processes

Armenia, Yerevan

A. K. Paronyan

Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA); Russian–Armenian University

Email: g_arakelov@mb.sci.am

Laboratory of Computational Modeling of Biological Processes

Armenia, Yerevan; Yerevan

G. G. Arakelov

Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA); Russian–Armenian University

Author for correspondence.
Email: g_arakelov@mb.sci.am

Laboratory of Computational Modeling of Biological Processes

Armenia, Yerevan; Yerevan

K. B. Nazaryan

Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA); Russian–Armenian University

Email: g_arakelov@mb.sci.am

Laboratory of Computational Modeling of Biological Processes

Armenia, Yerevan; Yerevan

References

  1. Lotthammer J.M., Ginell G.M., Griffith D., Emenecker R.J., Holehouse A.S. (2024) Direct prediction of intrinsically disordered protein conformational properties from sequences. Nat. Methods. 21(3), 465–476. doi: 10.1038/s41592-023-02159-5
  2. Shrestha U.R., Smith J.C., Petridis L. (2021) Full structural ensembles of intrinsically disordered proteins from unbiased molecular dynamics simulations. Commun. Biol. 4(1), 243.
  3. Gong X., Zhang Y., Chen J. (2021) Advanced sampling methods for multiscale simulation of disordered proteins and dynamic interactions. Biomolecules. 11, 1416.
  4. Hartman, A.M., Elgaher W.A.M., Hertrich N., Andrei S.A., Ottmann C., Hirsch A.K.H. (2020) Discovery of small-molecule stabilizers of 14-3-3γ protein–protein interactions via dynamic combinatorial chemistry. ACS Med. Chem. Lett. 11, 1041–1046.
  5. Somsen B.A., Cossar P.J., Arkin M.R., Brunsveld L., Ottmann C. (2024) 14‐3‐3 protein‐protein interactions: from mechanistic understanding to their small‐molecule stabilization. Chembiochem. 25(14), e202400214.
  6. Liu J., Cao S., Ding G., Wang B., Li Y., Zhao Y., Shao Q., Feng J., Liu S., Qin L., Xiao Y. (2021) The role of 14‐3‐3 proteins in cell signalling pathways and virus infection. J. Cell Mol. Med. 25, 4173–4182.
  7. Yang X., Lee W.H., Sobott F., Papagrigoriou E., Robinson C.V., Grossmann J.G., Sundström M., Doyle D.A., Elkins J.M. (2006) Structural basis for protein–protein interactions in the 14-3-3γ protein family. Proc. Natl. Acad. Sci. USA. 103, 17237–17242.
  8. Pitasse-Santos P., Hewitt-Richards I., Abeywickrama Wijewardana Sooriyaarachchi M.D., Doveston R.G. (2024) Harnessing the 14-3-3γ protein–protein interaction network. Curr. Opin. Struct. Biol. 86, 102822.
  9. Falcicchio M., Ward J.A., Macip S., Doveston R.G. (2020) Regulation of p53 by the 14-3-3γ protein interaction network: new opportunities for drug discovery in cancer. Cell Death Discov. 6(1), 126.
  10. Muradyan N., Arakelov V., Sargsyan A., Paronyan A., Arakelov G., Nazaryan K. (2024) Impact of mutations on the stability of SARS-CoV-2 nucleocapsid protein structure. Sci. Rep. 14(1), 5870.
  11. Cubuk J., Alston J.J., Incicco J.J., Singh S., Stuchell-Brereton M.D., Ward M.D., Zimmerman M.I., Vithani N., Griffith D., Wagoner J.A., Bowman G.R., Hall K.B., Soranno A., Holehouse A.S. (2021) The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun. 12(1), 1936.
  12. Ni X., Han Y., Zhou R., Zhou Y., Lei J. (2023) Structural insights into ribonucleoprotein dissociation by nucleocapsid protein interacting with non-structural protein 3 in SARS-CoV-2. Commun. Biol. 6(1), 193.
  13. Tugaeva K.V., Hawkins D.E.D.P., Smith J.L.R., Bayfield O.W., Ker D.S., Sysoev A.A., Klychnikov O.I., Antson A.A., Sluchanko N.N. (2021) The mechanism of SARS-CoV-2 nucleocapsid protein recognition by the human 14-3-3γ proteins. J. Mol. Biol. 433, 166875.
  14. Joerger A.C., Fersht A.R. (2008) Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77, 557–582.
  15. Rajagopalan S., Sade R.S., Townsley F.M., Fersht A.R. (2009) Mechanistic differences in the transcriptional activation of p53 by 14-3-3γ isoforms. Nucleic Acids Res. 38, 893–906.
  16. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. (2021) Highly accurate protein structure prediction with AlphaFold. Nature. 596, 583–589.
  17. Evans R., O’Neill M., Pritzel A., Antropova N., Senior A., Green T., Žídek A., Bates R., Blackwell S., Yim J., Ronneberger O., Bodenstein S., Zielinski M., Bridgland A., Potapenko A., Cowie A., Tunyasuvunakool K., Jain R., Clancy E., Kohli P., Jumper J., Hassabis D. (2021) Protein complex prediction with AlphaFold-Multimer. bioRxiv. doi: 10.1101/2021.10.04.463034
  18. Dokholyan N.V., Buldyrev S.V., Stanley H.E., Shakhnovich E.I. (1998) Discrete molecular dynamics studies of the folding of a protein-like model. Fold. Des. 3, 577–587.
  19. Proctor E.A., Ding F., Dokholyan N.V. (2011) Discrete molecular dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 80–92.
  20. Tubiana T., Carvaillo J.-C., Boulard Y., Bressanelli S. (2018) TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries. J. Chem. Inf. Model. 58, 2178–2182.
  21. Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. (2020) UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82.
  22. Proctor E.A., Dokholyan N.V. (2016) Applications of discrete molecular dynamics in biology and medicine. Curr. Opin. Struct. Biol. 37, 9–13.
  23. Szöllősi D., Horváth T., Han K.H., Dokholyan N.V., Tompa P., Kalmár L., Hegedűs T. (2014) Discrete molecular dynamics can predict helical prestructured motifs in disordered proteins. PLoS One. 9, e95795
  24. Zamel J., Chen J., Zaer S., Harris P.D., Drori P., Lebendiker M., Kalisman N., Dokholyan N.V., Lerner E. (2023) Structural and dynamic insights into α-synuclein dimer conformations. Structure. 31, 411–423.e6.
  25. Ding F., Dokholyan N.V. (2006) Emergence of protein fold families through rational design. PLoS Comput. Biol. 2, e85.
  26. Kasahara K., Terazawa H., Takahashi T., Higo J. (2019) Studies on molecular dynamics of intrinsically disordered proteins and their fuzzy complexes: a mini-review. Comput. Struct. Biotechnol. J. 17, 712–720.
  27. Fatafta H., Samantray S., Sayyed-Ahmad A., Coskuner-Weber O., Strodel B. (2021) Molecular simulations of IDPs: from ensemble generation to IDP interactions leading to disorder-to-order transitions. Prog. Mol. Biol. Transl. Sci. 183, 135–185. doi: 10.1016/bs.pmbts.2021.06.003
  28. Tesei G., Trolle A.I., Jonsson N., Betz J., Knudsen F.E., Pesce F., Johansson K.E., Lindorff-Larsen K. (2024) Conformational ensembles of the human intrinsically disordered proteome. Nature. 626, 897–904.
  29. Shrestha U.R., Smith J.C., Petridis L. (2021) Full structural ensembles of intrinsically disordered proteins from unbiased molecular dynamics simulations. Commun. Biol. 4(1), 243.
  30. Kozeleková A., Náplavová A., Brom T., Gašparik N., Šimek J., Houser J., Hritz J. (2022) Phosphorylated and phosphomimicking variants may differ – a case study of 14-3-3γ protein. Front. Chem. 10, 835733.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Modeled AlphaFold2 complexes of 14-3-3γ/N and 14-3-3γ/p53. Comparison with domains available for X-ray structural analysis for the SARS-CoV-2 N protein [PDB ID: 6WZQ (CTD) and 7N0R (NTD)] and p53 protein [PDB ID: 2XWR (DBD) and 1AIE (TD)]. RMSD – root mean square deviation; X-ray – X-ray structural analysis.

Download (708KB)
3. Fig. 2. Final structures simulated by the AF2 algorithm, colored according to the plDDT scale.

Download (1MB)
4. Fig. 3. Results of πDMD simulation. a – Complex-1 114-3-3γ/N: initial structure and frame 800; b – Complex-2 14-3-3γ/N: initial structure and frame 1500; c – Complex-1 14-3-3γ/p53: initial structure and frame 500; d – Complex-2 14-3-3γ/p53: initial structure and frame 1500. All structures are shown on the side.

Download (1MB)
5. Fig. 4. Results of cluster analysis of 14-3-3γ/N complexes (TTClust program). a – Clusters of 14-3-3γ/N complex-1 with 4 representative centroids; b – Clusters of 14-3-3γ/N complex-2 with two representative centroids.

Download (631KB)
6. Fig. 5. Binding site distances for 14-3-3γ/N complexes. The interaction involves S197 and T205 of N protein N and K50, R57, K125, and R132 of 14-3-3γ protein. Distances are given in angstroms (Å).

Download (1MB)
7. Fig. 6. Binding site distances for 14-3-3γ/p53 complexes. The interaction involves S366, S378, and T387 of p53 and K50, R57, K125, and R132 of 14-3-3γ. Distances are given in angstroms (Å).

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences