Analysis of placental transcriptome data as a tool for identifying of molecular pathways related to great obstetrical syndromes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Numerous histological studies have demonstrated that the key pathogenetic mechanisms of great obstetrical syndromes (GOS) are associated with impaired placentation processes. However, the molecular basis of this discovery is still unclear. Therefore, the purpose of this work was to characterize the molecular mechanisms and search for GOS new genetic markers based on an integrative analysis of data obtained by whole genome expression profiling of placental tissue with preeclampsia, fetal growth restriction, premature birth and physiological pregnancy. The significant role of oxidative stress, ferroptosis and intercellular interactions disorders in placenta has been shown as common mechanisms of GOS pathogenetics. We have identified 64 genes significantly dysregulated at least in two pregnancy complications. The most significant cell populations enriched with these genes were maternal endothelial cells and syncytiotrophoblast cells. Computational analysis and topology assessment of the protein-protein interaction network made it possible to identify SOD1, ACTG1, TXNRD1, TKT, GCLM, GOT1, ACO1 and UBB as hub genes. We also emphasized key regulators (MAPK3, MID1, LCMT1, DUSP10, TOPS, SOX10, EGFR, TFAP2A, GLIS1, NR2F1, NR2F2, PAX5, HSF1 and BCL6) triggering a cascade of reactions with the involvement of detected differentially expressed genes. These genes are overrepresented in the MAP kinase and interferon-gamma response signaling pathways. The above mentioned genes and their products are the most promising biomarkers for the development of new approaches to the risk factors assessment and GOS targeted therapy. Further studies should be aimed at clarifying their functional and diagnostic significance in the development of pregnancy pathological conditions.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Е. Trifonova

Research Institute of Medical Genetics, Tomsk National Research Medical Center; Siberian State Medical University

Хат алмасуға жауапты Автор.
Email: ekaterina.trifonova@medgenetics.ru
Ресей, Tomsk; Tomsk

A. Марков

Research Institute of Medical Genetics, Tomsk National Research Medical Center

Email: ekaterina.trifonova@medgenetics.ru
Ресей, Tomsk

A. Zarubin

Research Institute of Medical Genetics, Tomsk National Research Medical Center

Email: ekaterina.trifonova@medgenetics.ru
Ресей, Tomsk

A. Babovskaya

Research Institute of Medical Genetics, Tomsk National Research Medical Center

Email: ekaterina.trifonova@medgenetics.ru
Ресей, Tomsk

М. Gavrilenko

Research Institute of Medical Genetics, Tomsk National Research Medical Center

Email: ekaterina.trifonova@medgenetics.ru
Ресей, Tomsk

T. Gabidulina

Siberian State Medical University

Email: ekaterina.trifonova@medgenetics.ru
Ресей, Tomsk

V. Stepanov

Research Institute of Medical Genetics, Tomsk National Research Medical Center

Email: ekaterina.trifonova@medgenetics.ru
Ресей, Tomsk

Әдебиет тізімі

  1. Di Renzo G.C. (2009) The great obstetrical syndromes. J. Matern. Fetal Neonatal Med. 22(8), 633–635.
  2. Romero R. (2009) Prenatal medicine: the child is the father of the man. J. Matern. Fetal Neonatal Med. 22(8), 636–639.
  3. Hoffman M.K. (2023) The great obstetrical syndromes and the placenta. Internat. J. Obstet. Gynecol. 130(Suppl. 3), 8–15.
  4. Brosens I., Puttemans P., Benagiano G. (2019) Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes. Am. J. Obstet. Gynecol. 221(5), 437–456.
  5. Wikstrm A.K., Stephansson O., Cnattingius S. (2011) Previous preeclampsia and risks of adverse outcomes in subsequent nonpreeclamptic pregnancies. Am. J. Obstet. Gynecol. 204(2), 148.e1–148.e6.
  6. Kvalvik L.G., Wilcox A.J., Skjærven R., Ostbye T., Harmon Q.E. (2020) Term complications and subsequent risk of preterm birth: registry based study. BMJ. 369, m1007.
  7. Rasmussen S., Ebbing C., Irgens L.M. (2017) Predicting preeclampsia from a history of preterm birth. PLoS One. 12(7), e0181016.
  8. Jayaram A., Collier C.H., Martin J.N. (2020) Preterm parturition and pre–eclampsia: The confluence of two great gestational syndromes. Int. J. Gynecol. Obstet. 150(1), 10–16.
  9. Трифонова Е.А., Габидулина Т.В., Ершов Н.И., Сереброва В.Н., Ворожищева А.Ю., Степанов В.А. (2014) Характеристика транскриптома плацентарной ткани у женщин с физиологической беременностью и преэклампсией. Acta Naturae. 6(2), 71–83.
  10. Бабовская А.А., Трифонова Е.А., Зарубин А.А., Марков А.В., Степанов В.А. (2020) Анализ коэкспрессии генов плацентарного транскриптома как основа для поиска ключевых сигнальных путей и биомаркеров преэклампсии. Мед. генетика. 19(11), 71–72.
  11. Meng T., Chen H., Sun M., Wang H. Zhao G., Wang X. (2012) Identification of differential gene expression profiles in placentas from preeclamptic pregnancies versus normal pregnancies by DNA microarrays. OMICS. 16(6), 301–311.
  12. Guo L., Tsai S.Q., Hardison N.E., James A.H., Motsinger-Reif A.A., Thames B., Stone E.A., Deng C., Piedrahita J.A. (2013) Differentially expressed microRNAs and affected biological pathways revealed by modulated modularity clustering (MMC) analysis of human preeclamptic and IUGR placentas. Placenta. 34(7), 599–605.
  13. Blair J.D., Yuen R.K., Lim B.K., McFadden D.E. (2013) Widespread DNA hypomethylation at gene enhancer regions in placentas associated with early-onset preeclampsia. Mol. Hum. Reprod. 19(10), 697–708.
  14. Yong H.E., Melton P.E., Johnson M.P., Freed K.A. Kalionis B., Murthi P., Brennecke S.P., Keogh R.J., Moses E.K. (2015) Genome-wide transcriptome directed pathway analysis of maternal preeclampsia susceptibility genes. PLoS One. 10(5), e0128230.
  15. Herse F., Dechend R., Harsem N.K., Wallukat G., Janke J., Qadri F., Hering L., Muller D.N., Luft F.C., Staff A.C. (2007) Dysregulation of the circulating and tissue–based renin-angiotensin system in preeclampsia. Hypertension. 49(3), 604–611.
  16. Martin E., Ray P.D., Smeester L., Grace M.R., Boggess K., Fry R.C. (2015) Epigenetics and preeclampsia: defining functional epimutations in the preeclamptic placenta related to the TGF-β pathway. PLoS One. 10(10), e0141294.
  17. Garrido–Gomez T., Dominguez F., Quiñonero A., Diaz–Gimeno P., Kapidzic M., Gormley M., Ona K., Padilla-Iserte P., McMaster M., Genbacev O., Perales A., Fisher S.J., Simón C. (2017) Defective decidualization during and after severe preeclampsia reveals a possible maternal contribution to the etiology. Proc. Natl. Acad. Sci. USA. 114(40), E8468–E8477.
  18. Nishizawa H., Ota S., Suzuki M., Kato T., Sekiya T., Kurahashi H., Udagawa Y. (2011) Comparative gene expression profiling of placentas from patients with severe pre-eclampsia and unexplained fetal growth restriction. Reprod. Biol. Endocrinol. 9, 107.
  19. Bukowski R., Sadovsky Y., Goodarzi H., Zhang H., Biggio J.R., Varner M., Parry S., Xiao F., Esplin S.M., Andrews W., Saade G.R., Ilekis J.V., Reddy U.M., Baldwin D.A. (2017) Onset of human preterm and term birth is related to unique inflammatory transcriptome profiles at the maternal fetal interface. PeerJ. 5, e3685.
  20. Davis S., Meltzer P.S. (2007) GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 23(14), 1846–1847.
  21. Turnbull A.K., Kitchen R.R., Larionov A.A., Renshaw L., Dixon J.M., Sims A.H. (2012) Direct integration of intensity-level data from Affymetrix and Illumina microarrays improves statistical power for robust reanalysis. BMC Med. Genomics. 5, 35.
  22. Durinck S., Spellman P.T., Birney E., Huber W. (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4(8), 1184–1191.
  23. Zhang B., Horvath S. (2005) A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, 17.
  24. Robinson M.D., McCarthy D.J., Smyth G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26(1), 139–140.
  25. Foroutan M., Bhuva D.D., Lyu R., Horan K., Cursons J., Davis M.J. (2018) Single sample scoring of molecular phenotypes. BMC Bioinformatics. 19, 404.
  26. Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., Mesirov J.P. (2005) Gene set enrichment analysis: a knowledge–based approach for interpreting genome–wide expression profiles. Proc. Natl. Acad. Sci. USA. 102(43), 15545–15550.
  27. Wang J., Vasaikar S., Shi Z., Greer M., Zhang B. (2017) WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucl. Acids Res. 45(W1), W130–W137.
  28. Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., Jensen L.J., von Mering C. (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucl. Acids Res. 49(D1), D605–D612.
  29. Chin C.H., Chen S.H., Wu H.H., Ho C.W., Ko M.T., Lin C.Y. (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biol. 8(Suppl 4), S11.
  30. Koschmann J., Bhar A., Stegmaier P., Kel A.E., Wingender E. (2015) Upstream analysis: an integrated promoter pathway analysis approach to causal interpretation of microarray data. Microarrays. 4(2), 270–286.
  31. Kel A., Boyarskikh U., Stegmaier P., Leskov L.S., Sokolov A.V., Yevshin I., Mandrik N., Stelmashenko D., Koschmann J., Kel-Margoulis O., Krull M., Martínez-Cardús A., Moran S., Esteller M., Kolpakov F., Filipenko M., Wingender E. (2019) Walking pathways with positive feedback loops reveal DNA methylation biomarkers of colorectal cancer. BMC Bioinformatics. 20(Suppl. 4), 119.
  32. Kel A. (2016) Data on master regulators and transcription factor binding sites found by upstream analysis of multiomics data on methotrexate resistance of colon cancer. Data Brief. 10, 499–504.
  33. Leek J.T., Johnson W.E., Parker H.S., Jaffe A.E., Storey J.D. (2012) The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 28(6), 882–883.
  34. Roland L., Beauchemin D., Acteau G., Fradette C., St-Pierre I., Bilodeau J.F. (2010) Effects of labor on placental expression of superoxide dismutases in preeclampsia. Placenta. 31(5), 392–400.
  35. Li H., Peng H., Hong W., Wei Y., Tian H., Huang X., Jia L., Zheng J., Duan T., He Q. Wang K. (2023) Human placental endothelial cell and trophoblast heterogeneity and differentiation revealed by single-cell RNA sequencing. Cells. 12, 87.
  36. Matsubara K., Matsubara Y., Uchikura Y., Sugiyama T. (2021) Pathophysiology of preeclampsia: the role of exosomes. Int. J. Mol. Sci. 22(5), 2572.
  37. Martin C., Bergamelli M., Malnou C.E., D’Angelo G. (2022) Placental extracellular vesicles in maternal–fetal communication during pregnancy. Biochem. Soc. Transactions. 50(6), 1785–1795.
  38. Buca D., Bologna G., D’Amico A., Cugini S., Musca F., Febbo M., D’Arcangelo D., Simeone P., Liberati M., Vitacolonna E., Miscia S., D’Antonio F., Lanuti P. (2020) Extracellular vesicles in feto-maternal crosstalk and pregnancy disorders. Int. J. Mol. Sci. 21(6), 2120.
  39. Vento-Tormo R., Efremova M., Botting R.A., Turco M.Y., Vento-Tormo M., Meyer K.B., Park J.E., Stephenson E., Polański K., Goncalves A., Gardner L., Holmqvist S., Henriksson J., Zou A., Sharkey A.M., Millar B., Innes B., Wood L., Wilbrey-Clark A., Payne R.P., Ivarsson M.A., Lisgo S., Filby A., Rowitch D.H., Bulmer J.N., Wright G.J., Stubbington M.J.T., Haniffa M., Moffett A., Teichmann S.A. (2018) Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 563(7731), 347–353.
  40. Garcia-Flores V., Romero R., Tarca A.L., Peyvandipour A., Xu Y., Galaz J., Miller D., Chaiworapongsa T., Chaemsaithong P., Berry S.M., Awonuga A.O., Bryant D.R., Pique-Regi R., Gomez-Lopez N. (2024) Deciphering maternal-fetal cross-talk in the human placenta during parturition using single-cell RNA sequencing. Sci. Transl. Med. 16(729), eadh8335.
  41. Chiarello D.I., Abad C., Rojas D., Toledo F., Vázquez C.M., Mate A., Sobrevia L., Marín R. (2020) Oxidative stress: normal pregnancy versus preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 1866(2), 165354.
  42. Hussain T., Murtaza G., Metwally E., Kalhoro D.H., Kalhoro M.S., Rahu B.A., Sahito R.G.A., Yin Y., Yang H., Chughtai M.I., Tan B. (2021) The role of oxidative stress and antioxidant balance in pregnancy. Mediators Inflamm. 2021, 9962860.
  43. Grzeszczak K., Lanocha-Arendarczyk N., Malinowski W., Ziętek P., Kosik-Bogacka D. (2023) Oxidative stress in pregnancy. Biomolecules. 13(12), 1768.
  44. Wang Z., Zhao G., Zibrila A.I., Li Y., Liu J., Feng W. (2021) Acetylcholine ameliorated hypoxia-induced oxidative stress and apoptosis in trophoblast cells via p38 MAPK/NF-κB pathway. Mol. Hum. Reprod. 27(8), gaab045.
  45. Guo L., Liu M., Duan T. (2023) Hydrogen suppresses oxidative stress by inhibiting the p38 MAPK signaling pathway in preeclampsia. Adv. Clin. Exp. Med. 32(3), 357–367.
  46. Zhang J., Liu X., Gao Y. (2021) Abnormal H3K27 histone methylation of RASA1 gene leads to unexplained recurrent spontaneous abortion by regulating Ras-MAPK pathway in trophoblast cells. Mol. Biol. Rep. 48(6), 5109–5119.
  47. Zhao H., Li Y., Dong N., Zhang L., Chen X., Mao H., Al-Ameri S.A.A., Wang X., Wang Q., Du L., Wang C., Mao H. (2021) LncRNA LINC01088 inhibits the function of trophoblast cells, activates the MAPK signaling pathway and associates with recurrent pregnancy loss. Mol. Hum. Reprod. 27(8), gaab047.
  48. Зенков Н.К., Колпаков А.Р., Меньщикова Е.Б. (2015) Редокс-чувствительная система Keap1/Nrf2/ARE как фармакологическая мишень при сердечно-сосудистой патологии. Сиб. Научный Мед. Журн. 35(5), 5–25.
  49. Kweider N., Huppertz B., Kadyrov M., Rath W., Pufe T., Wruck C.J. (2014) A possible protective role of Nrf2 in preeclampsia. Ann. Anat. 196(5), 268–277.
  50. Liao T., Xu X., Ye X., Yan J. (2022) DJ-1 upregulates the Nrf2/GPX4 signal pathway to inhibit trophoblast ferroptosis in the pathogenesis of preeclampsia. Sci. Rep. 12(1), 2934.
  51. Tantengco A.G., de Castro Silva M., Shahin H., Bento G.F.C., Cursino G.C., Cayenne S., da Silva M.G., Menon R. (2021) The role of nuclear factor erythroid 2-related factor 2 (NRF2) in normal and pathological pregnancy: а systematic review. Am. J. Reprod. Immunol. 86(6), e13496.
  52. Hong K., Muralimanoharan S., Kwak Y.T., Mendelson C.R. (2022) NRF2 serves a critical role in regulation of immune checkpoint proteins (ICPs) during trophoblast differentiation. Endocrinology. 163(7), bqac070.
  53. Illarionov R.A., Pachuliia O.V., Vashukova E.S., Tkachenko A.A., Maltseva A.R., Postnikova T.B., Nasykhova Y.A., Bespalova O.N., Glotov A.S. (2022) Plasma miRNA profile in high risk of preterm birth during early and mid-pregnancy. Genes. 13(11), 2018.
  54. Martinez-Fierro M.L., Garza-Veloz I., Carrillo-Sanchez K., Martinez–Gaytan V., Cortes-Flores R., Ochoa-Torres M.A., Guerrero G.G., Rodriguez-Sanchez I.P., Cancela-Murrieta C.O., Zamudio-Osuna M., Badillo-Almaraz J.I., Castruita-De la Rosa C. (2014) Expression levels of seven candidate genes in human peripheral blood mononuclear cells and their association with preeclampsia. Hypertens. Pregnancy. 33(2), 191–203.
  55. Погорелова Т.Н., Гунько В.О., Никашина А.А., Палиева Н.В., Аллилуев И.А., Ларичкин А.В. (2019) Нарушение регуляции редокс–процессов в плаценте при ее дисфункции. Проблемы репродукции. 25(6), 112–118.
  56. Ivanišević J., Ardalić D., Banjac G., Janać J., Cabunac P., Vekić J., Zeljković A., Spasojević-Kalimanovska V., Karadžov Orlić N., Mandić Marković V., Miković Ž., Stefanović A. (2022) Antioxidant status in hypertensive disorders of pregnancy. Hypertens. Pregnancy. 41(1), 31–38.
  57. Nakamura M., Sekizawa A., Purwosunu Y., Okazaki S., Farina A., Wibowo N., Shimizu H., Okai T. (2009) Cellular mRNA expressions of antioxidant factors in the blood of preeclamptic women. Prenat. Diagn. 29(7), 691–696.
  58. Lin P., Lai X., Wu L., Liu W., Lin S., Ye J. (2021) Network analysis reveals important genes in human placenta. J. Obstet. Gynaecol. Res. 47(8), 2607–2615.
  59. Wang Y., Zhao S., Gu Y., Lewis D.F. (2018) Loss of slit protein nephrin is associated with reduced antioxidant superoxide dismutase expression in podocytes shed from women with preeclampsia. Physiol. Rep. 6(13), e13785.
  60. Ray A., Bhati T., Pradhan D., Arora R., Parvez S., Rastogi S. (2022) Aberrant gene expression of superoxide dismutases in Chlamydia trachomatis-infected recurrent spontaneous aborters. Sci. Rep. 12(1), 14688.
  61. Donabela F.C., Meola J., Padovan C.C., de Paz C.C., Navarro P.A. (2015) Higher SOD1 gene expression in cumulus cells from infertile women with moderate and severe endometriosis. Reprod. Sci. 22(11), 1452–1460.
  62. Vennou K.E., Kontou P.I., Braliou G.G., Bagos P.G. (2020) Meta-analysis of gene expression profiles in preeclampsia. Pregnancy Hypertens. 19, 52–60.
  63. Schierding W., Antony J., Karhunen V., Vääräsmäki M., Franks S., Elliott P., Kajantie E., Sebert S., Blakemore A., Horsfield J.A., Järvelin M.R., O’Sullivan J.M., Cutfield W.S. (2018) GWAS on prolonged gestation (post-term birth): analysis of successive Finnish birth cohorts. J. Med. Genet. 55(1), 55–63.
  64. Xu H., Xie Y., Sun Y., Guo R., Lv D., Li X., Li F., He M., Fan Y., Deng D. (2021) Integrated analysis of multiple microarray studies to identify potential pathogenic gene modules in preeclampsia. Exp. Mol. Pathol. 120, 104631.
  65. Xu Z.P., Wawrousek E.F., Piatigorsky J. (2002) Transketolase haploinsufficiency reduces adipose tissue and female fertility in mice. Mol. Cell. Biol. 22(17), 6142–6147.
  66. Wu Q., Ying X., Yu W., Li H., Wei W., Lin X., Zhang X. (2022) Identification of ferroptosis-related genes in syncytiotrophoblast-derived extracellular vesicles of preeclampsia. Medicine. 101(44), e31583.
  67. Mei S., Qin Q., Wu Q., Sun H., Zheng R., Zang C., Zhu M., Wu J., Shi X., Taing L., Liu T., Brown M., Meyer C.A., Liu X.S. (2017) Cistrome data browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucl. Acids Res. 45(D1), D658–D662.
  68. Иваненко К.А., Прасолов В.С., Хабушева Э.Р. (2022) Транскрипционный фактор SP1 в регуляции экспрессии генов, кодирующих компоненты сигнальных путей MAPK, JAK/STAT и PI3K/AKT. Молекуляр. биология. 56(5), 832–847.
  69. Menon R., Papaconstantinou J. (2016) p38 Mitogen activated protein kinase (MAPK): a new therapeutic target for reducing the risk of adverse pregnancy outcomes. Expert. Opin. Ther. Targets. 20(12), 1397–1412.
  70. Liu H., Wang W., Liu C. (2021) Increased expression of IFN-γ in preeclampsia impairs human trophoblast invasion via a SOCS1/JAK/STAT1 feedback loop. Exp. Ther. Med. 21(2), 112.
  71. Yi J.Z., Chen Z.H., Xu F.H., Wang Z.Y., Zhang H.Q., Jiang G.S., Luan X.Y. (2018) Interferon-γ suppresses the proliferation and migration of human placenta-derived mesenchmal stromal cells and enhances their ability to induce the generation of CD4+CXCR5+Foxp3+ Treg subset. Cell. Immunol. 326, 42–51.
  72. Chen C.P., Piao L., Chen X., Yu J., Masch R., Schatz F., Lockwood C.J., Huang S.J. (2015) Expression of interferon-γ by decidual cells and natural killer cells at the human implantation site: implications for preeclampsia, spontaneous abortion, and intrauterine growth restriction. Reprod. Sci. 22(11), 1461–1467.
  73. Sheibak N., Mahmoudzadeh–Sagheb H., Moudi B., Heidari Z. (2020) Elevated immunoexpression of interferon-gamma in placenta tissue samples from pregnancies complicated with preeclampsia compared to the placenta previa. Pregnancy Hypertens. 22, 175–180.
  74. Jain A., Tuteja G. (2021) PlacentaCellEnrich: а tool to characterize gene sets using placenta cell-specific gene enrichment analysis. Placenta. 103, 164–171.
  75. Vento-Tormo R., Efremova M., Botting R.A., Turco M.Y., Vento-Tormo M., Meyer K.B., Park J.E., Stephenson E., Polański K., Goncalves A., Gardner L., Holmqvist S., Henriksson J., Zou A., Sharkey A.M., Millar B., Innes B., Wood L., Wilbrey-Clark A., Payne R.P., Ivarsson M.A., Lisgo S., Filby A., Rowitch D.H., Bulmer J.N., Wright G.J., Stubbington M.J.T., Haniffa M., Moffett A., Teichmann S.A. (2018) Single-cell reconstruction of the early maternal–fetal interface in humans. Nature. 563, 347–353.
  76. Suryawanshi H., Morozov P., Straus A., Sahasrabudhe N., Max K.E.A., Garzia A., Kustagi M., Tuschl T., Williams Z. (2018) A single-cell survey of the human first trimester placenta and decidua. Sci. Adv. 4(10), eaau4788.
  77. Yagel S., Cohen S.M., Admati I., Skarbianskis N., Solt I., Zeisel A., Beharier O., Goldman-Wohl D. (2023) Expert review: preeclampsia type I and type II. Am. J. Obstet. Gynecol. MFM. 5(12), 101203.
  78. Harris L.K., Benagiano M., D’Elios M.M., Brosens I., Benagiano G. (2019) Placental bed research: II. Functional and immunological investigations of the placental bed. Am. J. Obstet. Gynecol. 221(5), 457–469.
  79. Yao T., Liu Q., Tian W. (2022) Deconvolution of a large cohort of placental microarray data reveals clinically distinct subtypes of preeclampsia. Front. Bioeng. Biotechnol. 10, 917086.
  80. Pawlak J.B., Bálint L., Lim L., Ma W., Davis R.B., Benyó Z., Soares M.J., Oliver G., Kahn M.L., Jakus Z., Caron K.M. (2019) Lymphatic mimicry in maternal endothelial cells promotes placental spiral artery remodeling. J. Clin. Invest. 129(11), 4912–4921.
  81. Campbell K.A., Colacino J.A., Puttabyatappa M., Dou J.F., Elkin E.R., Hammoud S.S., Domino S.E., Dolinoy D.C., Goodrich J.M., Loch-Caruso R., Padmanabhan V., Bakulski K.M. (2023) Placental cell type deconvolution reveals that cell proportions drive preeclampsia gene expression differences. Commun. Biol. 6, 264.
  82. Kang H., Subramaniam M., Targ S., Nguyen M., Maliskova L., McCarthy E., Wan E., Wong S., Byrnes L., Lanata C.M., Gate R.E., Mostafavi S., Marson A., Zaitlen N., Criswell L.A., Ye C.J. (2018) Multiplexed droplet single-cell RNA sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Study design. FB – physiological pregnancy; PE – preeclampsia; PR – premature birth; IGR – fetal growth restriction; MOS – major obstetric syndromes; DEG – differentially expressed genes.

Жүктеу (1MB)
3. Fig. 2. Clustering of samples included in the integrative analysis. Dataset identification numbers according to the GEO database are given. Datasets obtained as a result of our own studies in Russian and Yakut population samples are designated “OUR_Y” and “OUR_R”, respectively.

Жүктеу (297KB)
4. Fig. 3. Venn diagram demonstrating the commonality and specificity of DEGs identified during the integrative analysis. PE – preeclampsia, IGR – fetal growth restriction, PR – premature birth.

Жүктеу (355KB)
5. Fig. 4. Protein-protein interactions of ALS-associated gene products based on transcriptome analysis.

Жүктеу (540KB)
6. Fig. 5. Analysis of gene network topology using the cytoHubba plugin. The central genes of the network with the maximum connection coefficient (rank) are highlighted in red.

Жүктеу (148KB)
7. Fig. 6. Major signaling pathways associated with master regulators.

Жүктеу (186KB)
8. Fig. 7. Heat map reflecting the variability of the expression level of a number of genes associated with ALS in cell populations identified in the placenta during the analysis of data obtained earlier by Vento-Tormo R. et al. [75].

Жүктеу (461KB)
9. Fig. 8. The main cell populations enriched in genes associated with ALS. The specificity of genes for a particular cell type was identified based on previously conducted single-cell sequencing. a – Vento-Tormo R. et al. [75]; b – Suryawanshi et al. [76]. The Fold change indicator reflects the change in the fold enrichment of cells with specific transcripts relative to the background set of genes (for more details, see [74]).

Жүктеу (161KB)

© Russian Academy of Sciences, 2025