Регенерация и реактивация катализаторов гидроочистки (обзор)
- Authors: Уваркина Д.Д.1, Будуква С.В.1, Климов О.В.1
-
Affiliations:
- Институт катализа им. Г. К. Борескова СО РАН
- Issue: Vol 64, No 1 (2024)
- Pages: 19-41
- Section: Articles
- URL: https://edgccjournal.org/0028-2421/article/view/655565
- DOI: https://doi.org/10.31857/S0028242124010028
- EDN: https://elibrary.ru/OJIWAD
- ID: 655565
Cite item
Abstract
В обзоре представлены данные, обобщающие основные направления по работе с дезактивированными катализаторами. Рассмотрено современное состояние технологий по регенерации и реактивации катализаторов гидроочистки. Кратко изложены промышленные технологии проведения окислительной регенерации катализаторов гидроочистки дизельных фракций. Освещены требования, предъявляемые к регенерированным катализаторам для проведения реактивации. Продемонстрированы реакции, протекающие в ходе регенерации и реактивации, а также условия, способствующие необратимой дезактивации.
Keywords
Full Text

About the authors
Дарья Дмитриевна Уваркина
Институт катализа им. Г. К. Борескова СО РАН
Author for correspondence.
Email: udd@catalysis.ru
ORCID iD: 0000-0002-8752-6552
Russian Federation, Новосибирск, 630090
Сергей Викторович Будуква
Институт катализа им. Г. К. Борескова СО РАН
Email: udd@catalysis.ru
ORCID iD: 0000-0001-7450-3960
Russian Federation, Новосибирск, 630090
Олег Владимирович Климов
Институт катализа им. Г. К. Борескова СО РАН
Email: udd@catalysis.ru
ORCID iD: 0000-0002-8089-2357
Russian Federation, Новосибирск, 630090
References
- Капустин В.М., Рудин М.Г. Химия и технология переработки нефти. М.: Химия: РГУ нефти и газа, 2013. 495 с.
- Dufresne P. Hydroprocessing catalysts regeneration and recycling // Appl. Catal. A Gen. 2007. V. 322. № SUPPL. P. 67–75. https://doi.org/10.1016/j.apcata.200701.013
- Stanislaus A., Marafi A., Rana M.S. Recent advances in the science and technology of ultra-low sulfur diesel (ULSD) production // Catal. Today. 2010. V. 153, № 1. P. 1–68. https://doi.org/10.1016/j.cattod.2010.05.011
- Кожемякин, М.Ю., Черкасова Е.И. Гидроочистка дизельного топлива // Вестник Казанского технологического университета. 2015. Т. 18. № 23. C. 28–30.
- Frank (Xin X.) Zhu, Richard Hoehn, Vasant Thakkar E.Y. Diesel hydrotreating process // Hydroprocessing for Clean Energy: Design, Operation, and Optimization. Wiley, 2017. P. 23–49. https://doi.org/10.1002/9781119328261.ch3
- Hensen E.J.M., de Beer V.H.J., van Veen J.A.R., van Santen R.A. A refinement on the notion of type I and II (Co)MoS phases in hydrotreating catalysts // Catal. Letters. 2002. V. 84. № 1. P. 59–67. https://doi.org/10.1023/A:1021024617582
- Lauritsen J.V., Kibsgaard J., Olesen G.H., Moses P.G., Hinnemann B., Helveg S., Nørskov J.K., Clausen B.S., Topsøe H., Lægsgaard E., Besenbacher F. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts // J. Catal. 2007. V. 249. № 2. P. 220–233. https://doi.org/10.1016/j.jcat.2007.04.013
- Marafi M., Rana M.S. Refinery waste: the spent hydroprocessing catalyst and its recycling options // Waste Management. 2016. V. 202. P. 219–230. https://doi.org/10.2495/WM160201
- Pinto I.S.S., Sadeghi S.M., Soares H.M.V.M. Separation and recovery of nickel, as a salt, from an EDTA leachate of spent hydrodesulphurization catalyst using precipitation methods // Chem. Eng. Sci. 2015. V. 122. P. 130–137. https://doi.org/10.1016/j.ces.2014.09.012
- Marafi M., Stanislaus A. Options and processes for spent catalyst handling and utilization // J. Hazard. Mater. 2003. V. 101. № 2. P. 123–132. https://doi.org/10.1016/S0304-3894(03)00145-6
- Eijsbouts S., Battiston A.A., van Leerdam G.C. Life cycle of hydroprocessing catalysts and total catalyst management // Catal. Today. 2008. V. 130. № 2–4. P. 361–373. https://doi.org/10.1016/j.cattod.2007.10.112
- Mochida I., Choi K.-H. An overview of hydrodesulfurization and hydrodenitrogenation // J. Japan Pet. Inst. 2004. V. 47. № 3. P. 145–163. https://doi.org/10.1627/jpi.47.145
- Marafi M., Stanislaus A., Furimsky E. Cascading // Handbook of Spent Hydroprocessing Catalysts. Elsevier, 2017. P. 261–265. https://doi.org/10.1016/B978-0-444-63881-6.00007-X
- Bose S., Das C. Preparation, characterization, and activity of γ-alumina-supported molybdenum/cobalt catalyst for the removal of elemental sulfur // Appl. Catal. A Gen. 2016. V. 512. P. 15–26. https://doi.org/10.1016/j.apcata.2015.12.006
- Докучаев И.С., Зурнина, А.А., Максимов Н.М., Тыщенко В.А. Исследование термического превращения мазута в присутствии регенерированного отработанного катализатора гидроочистки // Мир нефтепродуктов. 2023. № 2. P. 28–36. https://doi.org/110.32758/2782-3040-2023-0-2-28-36
- Wang J., Wang S., Olayiwola A., Yang N., Liu B., Weigand J.J., Wenzel M., Du H. Recovering valuable metals from spent hydrodesulfurization catalyst via blank roasting and alkaline leaching // J. Hazard. Mater. 2021. V. 416. P. 125849. https://doi.org/10.1016/j.jhazmat.2021.125849
- Chen R., Feng C., Tan J., Zhang C., Yuan S., Liu M., Hu H., Li Q., Hu J. Stepwise separation and recovery of molybdenum, vanadium, and nickel from spent hydrogenation catalyst // Hydrometallurgy. 2022. V. 213. P. 105910. https://doi.org/10.1016/j.hydromet.2022.105910
- Zhang D., Liu Y., Hu Q., Ke X., Yuan S., Liu S., Ji X., Hu J. Sustainable recovery of nickel, molybdenum, and vanadium from spent hydroprocessing catalysts by an integrated selective route // J. Clean. Prod. 2020. V. 252. P. 119763. https://doi.org/10.1016/j.jclepro.2019.119763
- Gomes N., Garjulli F., Botelho Junior A.B., Espinosa D.C.R., Baltazar M. dos P.G. Recycling of spent catalysts from the petrochemical industry by hydrometallurgy to obtain high-purity nickel products for electroplating // JOM. 2024. V. 76. № 3. P. 1372–1382. https://doi.org/10.1007/s11837-023-06290-8
- Le M.N., Lee M.S. A review on hydrometallurgical processes for the recovery of valuable metals from spent catalysts and life cycle analysis perspective // Miner. Process. Extr. Metall. Rev. 2021. V. 42. № 5. P. 335–354. https://doi.org/10.1080/08827508.2020.1726914
- Brito A., Arvelo R., Borges M.E., Garcia F.J. Regeneration of a Ni-Mo/Al2O3 catalyst // Chem. Eng. Res. Des. 2001. V. 79. № 1. P. 81–88. https://doi.org/10.1205/026387601528417
- Dufresne P., Valeri F., Abotteen D.S. Continuous developments of catalyst off-site regenerationand presulfiding // Studies in Surface Science and Catalysis. 1996. V. 100. № C. P. 253–262. https://doi.org/10.1016/S0167-2991(96)80026-7
- Смирнов, В.К., Ирисова, К.Н., Талисман Е.Л. Способ восстановления активности катализаторов гидрогенизационных процессов: Pat. RU2358805 USA. РФ, 2008.
- Zhou J., Zhao J., Zhang J., Zhang T., Ye M., Zhongmin L. Regeneration of catalysts deactivated by coke deposition: a review // Chinese J. Catal. 2020. V. 41. № 7. P. 1048–1061. https://doi.org/10.1016/S1872-2067(20)63552-5
- Abdullah H.A., Hauser A., Ali F.A., Al-Adwani A. Optimal Conditions for Coke Extraction of Spent Catalyst by Accelerated Solvent Extraction Compared to Soxhlet // Energy & Fuels. 2006. V. 20. № 1. P. 320–323. https://doi.org/10.1021/ef050227l
- Shi X., Liu Q., Liu Z., Shi L., Han W., Li M., Zhang L., Nie H. Coke removal from a deactivated industrial diesel hydrogenation catalyst by tetralin at 300–400°C // Energy and Fuels. 2019. V. 33. № 3. P. 2437–2444. https://doi.org/10.1021/acs.energyfuels.8b03983
- Jaddoa A.A., Bilalov T., Gumerov F., Gabitov F., Neindre B. Regeneration of nickel-molybdenum catalysts DN-3531 and Criterion 514 used in kerosene and gas oil hydrotreating by supercritical carbon dioxide extraction // Int. J. Anal. Mass Spectrom. Chromatogr. 2015. V. 3. № 3. P. 37–46. http://dx.doi.org/10.4236/ijamsc.2015.33005
- Гайдамак С.Н. Регенерация гетерогенных катализаторов озоном в среде сверхкритического диоксида углерода // Дис. …к. х. н. МГУ, 2015. 130 с.
- Pinard L., Batiot-Dupeyrat C. Non-thermal plasma for catalyst regeneration: a review // Catal. Today. 2024. V. 426. P. 114372. https://doi.org/10.1016/j.cattod.2023.114372
- Furimsky E. Potential for catalyzed coproduction of hydrogen during fluid coking of heavy petroleum feeds // Energy and Fuels. 2008. V. 22. № 1. P. 237–242. https://doi.org/10.1021/ef700550j
- Курганов В.М., Кушнер Б.Э., Агафонов А.В. Паровоздушная регенерация катализаторов гидроочистки. Москва: ЦНИИTЭнефт, 1972. 73 c.
- Jin X., Li M., Fu L., Wu C., Tian X., Wang P., Zhou Y., Zuo J. A thorough observation of an ozonation catalyst under long-term practical operation: deactivation mechanism and regeneration // Sci. Total Environ. 2022. V. 830. P. 154803. https://doi.org/10.1016/j.scitotenv.2022.154803
- Михайлова Н.Н., Гасан-заде Э.И., Шавшукова С.Ю., Ахметов А.Ф. Вопросы дезактивации и регенерации гетерогенных катализаторов нефтепереработки и нефтехимии (из истории научных школ УГНТУ) // НефтеГазоХимия. 2022. V. 3. P. 66–68. https://doi.org/10.24412/2310-8266-2022-3-66-68
- Hutchings G.J., Hunter R., van Rensburg L.J. Methanol and dimethyl ether conversion to hydrocarbons using tungsten trioxide/alumina as catalyst. A study of catalyst reactivation // Appl. Catal. 1988. V. 41. P. 253–259. https://doi.org/10.1016/S0166-9834(00)80396-6
- Dufresne P., Brahma N. Off‐site regeneration of hydroprocessing catalysts // Bull. des Sociétés Chim. Belges. Wiley‐VCH Verlag GmbH & Co. KGaA, 1995. V. 104. № 4–5. P. 339–346. https://doi.org/10.1002/bscb.19951040424
- Осипов, Л.Н., Гимбутас, А.А., Чаговец, А.Н., Виноградова, Н.Я., Карбаускас Г., Беднов Б.В. Совершенствование газовоздушной регенерации катализаторов гидроочистки вакуумного дистиллята // Химия и технология топлив и масел. 1995. Т. 5. С. 12–14. [Osipov L.N., Gimbutas A.A., Chagovets A.N., Vinogradova N. Ya., Karbauskas G., Bednov B.V. Improvement of gas-air regeneration of catalysts in hydrotreating vacuum distillate // Chem. Technol. Fuels Oils. 1995. V. 31. P. 210–213]. https://doi.org/10.1007/BF00727191
- Minh C. Le, Li C., Brown T.C. Kinetics of coke combustion during temperature-programmed oxidation of deactivated cracking catalysts. 1997. V. 111. P. 383–390. https://doi.org/10.1016/S0167-2991(97)80178-4
- Furimsky E., Nielsen M., Jurasek P. Formation of nitrogen сompounds from nitrogen-сontaining rings during oxidative regeneration of spent hydroprocessing catalysts // Energy and Fuels. 1995. V. 9. № 3. P. 439–447. https://doi.org/10.1021/ef00051a008
- Marafi M., Stanislaus A., Furimsky E. Regeneration // Handbook of Spent Hydroprocessing Catalysts. Elsevier, 2017. P. 141–220. https://doi.org/10.1016/B978-0-444-63881-6.00005-6
- Osipov L.N., Gimbutas A.A., Chagovets A.N., Vinogradova N. Ya., Karbauskas G., Bednov B.V. Improvement of gas-air regeneration of catalysts in hydrotreating vacuum distillate // Chem. Technol. Fuels Oils. 1995. V. 31. № 5. P. 210–213. https://doi.org/10.1007/BF00727191
- Furimsky E., Siukola A., Turenne A. Effect of temperature and O2 concentration on N-containing emissions during oxidative regeneration of hydroprocessing catalysts // Ind. Eng. Chem. Res. 1996. V. 35. № 12. P. 4406–4411. https://doi.org/10.1021/ie960003d
- Yoshimura Y., Sato T., Shimada H., Matsubayashi N., Imamura M., Nishijima A., Yoshitomi S., Kameoka T., Yanase H. Oxidative regeneration of spent molybdate and tungstate hydrotreating catalysts // Energy and Fuels. 1994. V. 8. № 2. P. 435–445. https://doi.org/10.1021/ef00044a023
- Harkin J. Market research report. Global Market for Catalyst Regeneration, BCC Research Report CHM046B. Электрон. версия. URL: https://pc04.twirpx.net/2699/2699801_C20E42BD/harkin_john_global_markets_for_catalyst_regeneration_chm046b.pdf.
- Berrebi G., Dufresne P., Jacquier Y. Recycling of spent hydroprocessing catalysts: EURECAT technology // Environ. Prog. 1993. V. 12. № 2. P. 97–100. https://doi.org/10.1016/0921-3449(94)90032-9
- Eurecat // Appl. Catal. A Gen. 1993. V. 104. № 2. P. N19–N20. https://doi.org/10.1016/0926-860X(93)85109-3
- Catalyst regeneration services moving belt technology and OPTICAT PLUS® // офиц. сайт URL: https://catalysts.evonik.com/en/Services/regeneration (дата обращения 12.03.204).
- Iwamoto R. Regeneration of residue hydrodesulfurization catalyst // J. Japan Pet. Inst. 2013. V. 56. № 3. P. 109–121. https://doi.org/10.1627/jpi.56.109
- Neuman D.J. Novel ebullated bed catalyst regeneration technology improves regenerated catalyst quality // Energy Citations Database. 1995. P. 1–20. Электрон. версия. https://www.osti.gov/biblio/93363 (дата обращения 12.03.2024).
- ООО «Первая регенерирующая компания» // офиц. сайт. URL: https://prkgroup.ru/ (дата обращения 12.03.2024).
- Установка регенерации катализатора с. 900 Гидро- крекинга // сайт. URL: https://pronpz.ru/neftepererabatyvayushchie-zavody/ufaneftehim.html#__900 (дата обращения 12.03.2024).
- Компания КАТАХИМ // офиц. сайт. URL: http://catachem.ru/page5.html (дата обращения 12.03.2024).
- РеоКат: мобильные решения для производственного сервиса // офиц. сайт. URL: https://reocat.ru (дата обращения 12.03.2024).
- ООО «Новокуйбышевский завод катализаторов». Услуги по регенерации катализаторов гидропроцессов // офиц. сайт. URL: http://www.nzk.ru/продукция-и-услуги (дата обращения 12.03.2024).
- Teixeira da Silva V.L.S., Frety R., Schmal M. Activation and regeneration of a NiMo/Al2O3 hydrotreatment catalyst // Ind. Eng. Chem. Res. American Chemical Society. 1994. V. 33. № 7. P. 1692–1699. https://doi.org/10.1021/ie00031a009
- Yoshimura Y., Matsubayashi N., Yokokawa H., Sato T., Shimada H., Nishijima A. Temperature-programmed oxidation of sulfided cobalt-molybdate/alumina catalysts // Ind. Eng. Chem. Res. 1991. V. 30. № 6. P. 1092–1099. https://doi.org/10.1021/ie00054a004
- Okamoto Y., Hioka K., Arakawa K., Fujikawa T., Ebihara T., Kubota T. Effect of sulfidation atmosphere on the hydrodesulfurization activity of SiO2-supported Co-Mo sulfide catalysts: local structure and intrinsic activity of the active sites // J. Catal. 2009. V. 268. № 1. P. 49–59. https://doi.org/10.1016/j.jcat.2009.08.017
- Miller J., Marshall C.L., Kropf A. (Co)MoS2/alumina hydrotreating catalysts: an EXAFS study of the chemisorption and partial oxidation with O2 // J. Catal. 2001. V. 202. № 1. P. 89–99. https://doi.org/10.1006/jcat.2001.3273
- Bergwerff J.A. Spatially Resolved Spectroscopy on the Preparation of CoMo/Al2O3 Hydrodesulphurization Catalysts. PhD thesis. Utrecht University, 2007.
- Mazoyer P., Geantet C., Diehl F., Loridant S., Lacroix M. Role of chelating agent on the oxidic state of hydrotreating catalysts // Catal. Today. 2008. V. 130. № 1. P. 75–79. https://doi.org/10.1016/j.cattod.2007.07.013
- Eijsbouts S. Life cycle of hydroprocessing catalysts and total catalyst management // Studies in Surface Science and Catalysis. 1999. V. 127. P. 21–36. https://doi.org/10.1016/S0167–2991(99)80391–7
- Gandubert A.D., Krebs E., Legens C., Costa D., Guillaume D., Raybaud P. Optimal promoter edge decoration of CoMoS catalysts: a combined theoretical and experimental study // Catal. Today. 2008. V. 130. № 1. P. 149–159. https://doi.org/10.1016/j.cattod.2007.06.041
- Bouwens S.M.A.M., Vanzon F.B.M., Vandijk M.P., Vanderkraan A.M., Debeer V.H.J., Vanveen J.A.R., Koningsberger D.C. On the structural differences between alumina-supported CoMoS type I and alumina-, silica-, and carbon-supported CoMoS type II phases studied by XAFS, MES, and XPS // J. Catal. 1994. V. 146. № 2. P. 375–393. https://doi.org/10.1006/jcat.1994.1076
- Eijsbouts S. Hydrotreating catalysts // Synthesis of Solid Catalysts. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2009. P. 301–328. https://doi.org/10.1002/9783527626854.ch14
- Topsøe H. The role of Co–Mo–S type structures in hydrotreating catalysts // Appl. Catal. A Gen. 2007. V. 322. № SUPPL. P. 3–8. https://doi.org/10.1016/j.apcata.2007.01.002
- Пинаева Л.Г., Климов О.В., Казаков М.О., Носков А.С. Развитие катализаторов гидропроцессов нефтепереработки // Катализ в промышленности. 2020. Т. 20. № 5. С. 391–406. https://doi.org/10.18412/1816-0387-2020-5-391-406
- Chen J., Mi J., Li K., Wang X., Garcia E.D., Cao Y., Jiang L., Oliviero L., Maugé F. Role of citric acid in preparing highly active CoMo/Al2O3 catalyst: from aqueous impregnation solution to active site formation // Ind. Eng. Chem. Res. American Chemical Society. 2017. V. 56. № 48. P. 14172–14181. https://doi.org/10.1021/acs.iecr.7b02877
- Langerak P.-P. Reacting to diesel sulfur reductions reacting to diesel sulfur reductions. Technology for regenerating and reusing STARS® catalysts helps refiners cut costs // Albemarle Catalyst Courier. 2014. № 83. P. 22–24.
- Сatalyst reactivation // Albemarle Catalyst Courier. 2011. 12–13 p.
- ReFRESHTM your Catalyst // сайт URL: https://www.digitalrefining.com/literature_1000931.pdf (дата обращения 12.03.2024).
- Olsen С., Watkins B., Jones D., Frampton G. Regenerating and reactivating type II catalysts // Refinery Operations. 2012. V. 3. № 6. P. 1–2.
- Street R.D., Seamans J.D., Gunter P.M. Improve ULSD investment return // Hydrocarb. Eng. 2003. V. 8. № 9. P. 25–32.
- Maximize the utilization of Impulse® Catalysts with Revival® // офиц. сайт. URL: https://www.axens.net/solutions/catalysts-adsorbents-grading-supply/middle-distillates-naphtha-hydrotreating-catalysts (дата обращения 14.03.2024).
- Martinez M. Excel rejuvenation restores regenerated HPC activity to near fresh // Chem. Eng. World. 2016. V. May. 2016. P. 28–29.
- EXCEL® Rejuvenation Technology // офиц. сайт. URL: https://catalysts.evonik.com/en/Services/rejuvenation (дата обращения 12.03.2024).
- Будуква С.В., Климов О.В., Носков А.С., Головачев В.А., Кондрашев Д.О., Клейменов А.В., Есипенко Р.В., Кубарев А.П., Храпов Д.В. Восстановление активности промышленной партии CoMo/Al2O3 катализатора глубокой гидроочистки // Катализ в промышленности. 2016. Т. 16. № 6. С. 33–41. https://doi.org/10.18412/1816-0387-2016-6-33-41
- Tyukilina P.M., Markova M.G., Kirillova E.V., Trusov O.A., Chernobrovin K.A., Boldinov V.A. Evaluation of the reactivation efficiency of hydrotreating catalysts // World Pet. Prod. 2023. V. 03. P. 35–42. https://doi.org/10.32758/2782-3040-2023-0-3-35-42
- Голубев, А.Б., Кургузов А. Повышение экономической эффективности нефтеперерабатывающих заводов в результате применения регенерации катализаторов гидропроцессов по технологии «вне реактора» // Сфера. Нефть и газ. 2023. Т. 5. С. 36–38. Электрон. версия. URL: https://xn-80aaigboe2bzaiqsf7i.xn – p1ai/upload/articles/pdf/sphereoilandgas_2023–2_rndragmet.pdf (дата обращения 14.03.2024).
- Патент WO2001002091A1, МПК C10G45/08. Process for regenerating and rejuvenating additive containing catalysts: опубл. 29.06.2009 // Eijsbouts S., Houtert F.W., Jansen M.A., Kamo T., Plantenga F.L.; заявитель Akzo Nobel N.V., Nippon Ketjen Co, Ltd // Google Patent. URL: https://patents.google.com/patent/WO2001002092A1 (дата обращения 12.03.2024).
- Patent № 2009126319 USA, МПК B01J23/94. Hydroprocessing using rejuvenated supported hydroprocessing catalysts: опубл. 03.14.2009. McCarthy S.J., Bai C., Borghard W.G., Lewis W.E. заявитель ExxonMobil Research and Engineering Co. // Google Patent. URL: https://patents.google.com/patent/US8128811B2 (дата обращения 12.03.2024).
- Patent № 11779908 USA, МПК B01J27/285. Method for rejuvenating a catalyst of a hydroprocessing and/or hydrocracking process: опубл. 10.12.2019. Devers E.; заявитель IFP Energies Nouvelles IFPEN // Google Patent. URL: https://patents.google.com/patent/US11779908B2 (дата обращения 12.03.2024).
- Bui N.-Q., Geantet C., Berhault G. Maleic acid, an efficient additive for the activation of regenerated CoMo/Al2O3 hydrotreating catalysts // J. Catal. 2015. V. 330. P. 374–386. https://doi.org/10.1016/j.apcata.2019.01.006
- Zhang Y., Han W., Long X., Nie H. Redispersion effects of citric acid on CoMo/γ-Al2O3 hydrodesulfurization catalysts // Catalysis Communications. 2016. V. 82. P. 20–23. https://doi.org/10.1016/j.catcom.2016.04.012
- Budukva S.V., Klimov O.V., Pereyma V. Yu., Noskov A.S. Reactivation of CoMo/Al2O3 hydrotreating catalysts with chelating agents // Russ. J. Appl. Chem. 2017. V. 90. № 9. P. 1425–1432. https://doi.org/10.1134/S1070427217090087
- Budukva S.V., Klimov O.V., Chesalov Yu.A., Prosvirin I.P., Larina T.V., Noskov A.S. Reactivation of CoMo/Al2O3 hydrotreating catalysts by citric acid // Catal. Letters. 2018. V. 148. № 5. P. 1525–1534. https://doi.org/10.1007/s10562-018-2365-9
- Budukva S.V., Klimov O.V., Uvarkina D.D., Chesalov Yu.A., Prosvirin I.P., Larina T.V., Noskov A.S. Effect of citric acid and triethylene glycol addition on the reactivation of CoMo/γ-Al2O3 hydrotreating catalysts // Catal. Today. 2019. V. 329. P. 35–43. https://doi.org/10.1016/j.cattod.2018.10.017
- Budukva S.V., Klimov O.V., Noskov A.S. A new method for reactivating the supported deep hydrotreatment CoMo/Al2O3 and NiMo/Al2O3 catalysts after oxidative regeneration // Catal. Ind. 2015. V. 7. № 3. P. 214–220. https://doi.org/10.1134/S2070050415030034
- Bui N.-Q., Geantet C., Berhault G. Activation of regenerated CoMo/Al2O3 hydrotreating catalysts by organic additives – the particular case of maleic acid // Appl. Catal. A Gen. 2019. V. 572. P. 185–196. https://doi.org/10.1016/j.apcata.2019.01.006
- Leliveld B. REACT technology available for high-performance ultra-low sulfur diesel catalyst: Ketjenfine 767 // Albemarle Catalyst Courier. 2007. № 68. P. 11.
- Fogassy G. Katalizátor management: regenerálás, reaktiválás, ex-situ szulfidálási technológiák: Презентация // Budapest University of Technology and Economics: офиц. сайт. 73 слайда URL: http://kkft.bme.hu/attachments/article/70/6%20Kataliz%C3%A1tor%20management%202022_03_25.pdf (дата обращения 14.03.2024).
- Laveille P., Chaudhry1 A-H., Riva A., Salameh A., Singaravel G., Dufresne P., Morin1 S., Berthod M. Maximizing utilization of reactivated and left-over catalysts in heavy gas oil hydrotreater: a case study of ADNOC refining // Oil Gas Sci. Technol. 2018. V. 73. P. 59. https://doi.org/10.2516/ogst/2018053
Supplementary files
