Зависимость селективности гидрирования фурфурола в присутствии рутениевых катализаторов от типа их носителя и параметров реакции

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Синтезированы катализаторы на основе наночастиц Ru, нанесенных на следующие носители: наносферический мезопористый фенолформальдегидный полимер; мезопористый цирконосиликат; композитный материал на основе мезопористых углеродных наносфер и цирконосиликата. Катализаторы испытаны в гидрировании фурфурола в воде при температурах 100–250°С и давлении водорода 1–5 МПа. Установлено влияние загрузки катализатора и времени реакции на конверсию и селективность процесса. Показано, что катализатор на основе композитного материала обладает более высокой активностью и селективностью в воднофазном гидрировании фурфурола.

Full Text

Restricted Access

About the authors

Максим Павлович Бороноев

Московский государственный университет имени М. В. Ломоносова

Author for correspondence.
Email: maxbv04@gmail.com
ORCID iD: 0000-0001-6129-598X

н.с., химический факультет

Russian Federation, Москва, 119991

Искандер Ильгизович Шакиров

Московский государственный университет имени М. В. Ломоносова

Email: maxbv04@gmail.com
ORCID iD: 0000-0003-2029-693X

химический факультет

Russian Federation, Москва, 119991

Екатерина Алексеевна Ролдугина

Московский государственный университет имени М. В. Ломоносова

Email: maxbv04@gmail.com
ORCID iD: 0000-0002-9194-1097

к.х.н., химический факультет

Russian Federation, Москва, 119991

Юлия Сергеевна Кардашева

Московский государственный университет имени М. В. Ломоносова

Email: maxbv04@gmail.com
ORCID iD: 0000-0002-6580-1082

к.х.н., химический факультет

Russian Federation, Москва, 119991

Валерий Юрьевич Верченко

Московский государственный университет имени М. В. Ломоносова

Email: maxbv04@gmail.com
ORCID iD: 0000-0002-8000-425X

к.х.н., химический факультет

Russian Federation, Москва, 119991

Сергей Викторович Кардашев

Московский государственный университет имени М. В. Ломоносова

Email: maxbv04@gmail.com
ORCID iD: 0000-0003-1818-7697

к.х.н., химический факультет

Russian Federation, Москва, 119991

References

  1. Zaera F. Nanostructured materials for applications in heterogeneous catalysis // Chem. Soc. Rev. 2013. V. 42 № 7. P. 2746–2762. https://doi.org/10.1039/C2CS35261C
  2. Verma P., Kuwahara Y., Mori K., Raja R., Yamashita H. Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications // Nanoscale. 2020. V. 12. № 21. P. 11333–11363. https://doi.org/10.1039/D0NR00732C
  3. Perego C., Millini R. Porous materials in catalysis: challenges for mesoporous materials // Chem. Soc. Rev. 2013. V. 42. № 9. P. 3956–3976. https://doi.org/10.1039/C2CS35244C
  4. Muylaert I., Verberckmoes A., De Decker J., Van Der Voort P. Ordered mesoporous phenolic resins: highly versatile and ultra stable support materials // Adv. Colloid Interface Sci. 2012. V. 175. P. 39–51. https://doi.org/10.1016/j.cis.2012.03.007
  5. Zhu H., Maheswari R., Ramanathan A., Subramaniam B. Evaporation-induced self-assembly of mesoporous zirconium silicates with tunable acidity and facile catalytic dehydration activity // Micropor. Mesopor. Mat. 2016. V. 223 P. 46–52. https://doi.org/10.1016/j.micromeso.2015.10.026
  6. Yu Z., Tian H., Sun K., Shao Y., Zhang L., Zhang S., Duan P., Liu Q., Niu S., Dong D., Hu X. Impacts of externally added Brønsted and Lewis acid on conversion of furfural to cyclopentanone over Ni/SiC catalyst // Mol. Cat. 2020. V. 496. ID. 111187. https://doi.org/10.1016/j.mcat.2020.111187
  7. Rayner G.B., Jr., Kang D., Lucovsky G. Spectroscopic study of chemical phase separation in zirconium silicate alloys // J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process Meas. Phenom. 2003. V. 21. № 4. P. 1783–1791.
  8. Podyacheva O.Y., Bulushev D.A., Suboch A.N., Svintsitskiy D.A., Lisitsyn A.S., Modin E., Chuvilin A., Gerasimov E.Y., Sobolev V.I., Parmon V.N. Highly stable single-atom catalyst with ionic Pd active sites supported on N-doped carbon nanotubes for formic acid decomposition // ChemSusChem. 2018. V. 11. № 21. P. 3724–3727. https://doi.org/10.1002/cssc.201801679
  9. Mason M.G. Electronic structure of supported small metal clusters // Phys. Rev. B. 1983. V. 27. № 2. P. 748–762. https://link.aps.org/doi/10.1103/PhysRevB.27.748
  10. Zhang F., Liang C., Wu X., Li H. A nanospherical ordered mesoporous Lewis acid polymer for the direct glycosylation of unprotected and unactivated sugars in water // Angew. Chem., Int. Ed. Engl. 2014. V. 53. № 32. P. 8498–8502. https://doi.org/10.1002/anie.201404353
  11. Choy J.H., Yoon J.B., Jung H., Park J.H. Zr K-Edge XAS and 29 Si MAS NMR studies on hexagonal mesoporous zirconium silicate // J. of Porous Mater. 2004. V. 11. P. 123–129. https://doi.org/10.1023/B: JOPO.0000038007.82949.e
  12. Meng Y., Gu D., Zhang F., Shi Y., Yang H., Li Z., Yu C., Tu B., Zhao D. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation // Angew. Chem. Int. Ed. 2005. V. 44. № 43. P. 7053–7059. https://doi.org/10.1002/anie.200501561
  13. Rayner G.B., Kang D., Hinkle C.L., Hong J.G., Lucovsky G. Chemical phase separation in Zr silicate alloys: a spectroscopic study distinguishing between chemical phase separation with different degree of micro- and nano-crystallinity // Microelectron. Eng. 2004. V. 72. № 1. P. 304–309. https://doi.org/10.1016/j.mee.2004.01.008
  14. Li Y.S., Wong P.C., Mitchell K.A.R. XPS investigations of the interactions of hydrogen with thin films of zirconium oxide II. Effects of heating a 26 Å thick film after treatment with a hydrogen plasma // Appl. Surf. Sci. 1995. V. 89. № 3. P. 263–269. https://doi.org/10.1016/0169-4332(95)00032-1
  15. Yue Z.R., Jiang W., Wang L., Gardner S.D., Pittman C.U. Surface characterization of electrochemically oxidized carbon fibers // Carbon. 1999. V. 37. № 11. P. 1785–1796. https://doi.org/10.1016/S0008-6223(99)00047-0
  16. Morgan D.J. Resolving ruthenium: XPS studies of common ruthenium materials // Surf. Interface Anal. 2015. V. 47. № 11. P. 1072–1079. https://doi.org/10.1002/sia.5852
  17. Okal J. The interaction of oxygen with high loaded Ru/γ-Al2O3 catalyst // Mater. Res. Bull. 2009. V. 44. № 2. P. 318–323. https://doi.org/10.1016/j.materresbull.2008.05.018
  18. Barzetti T., Selli E., Moscotti D., Forni L. Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts // J. Chem. Soc. Faraday Trans. 1996. V. 92. № 8. P. 1401–1407. https://doi.org/10.1039/FT9969201401
  19. Panagiotopoulou P., Vlachos D.G. Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst // Appl. Catal. A. 2014. V. 480. P. 17–24. https://doi.org/10.1016/j.apcata.2014.04.018
  20. Swift T.D., Nguyen H., Erdman Z., Kruger J.S., Nikolakis V., Vlachos D.G. Tandem Lewis acid/Brønsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta // J. of Catal. 2016. V. 333. P. 149–161. https://doi.org/10.1016/j.jcat.2015.10.009

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Isotherms of nitrogen adsorption/desorption (a) and pore size distribution (b) of mesoporous materials.

Download (178KB)
3. Fig. 2. Diffractograms of mesoporous materials.

Download (115KB)
4. Fig. 3. Micrography (a) and energy dispersion spectrum (b) of a mesoporous composite material based on carbon nanospheres and zirconosilicate.

Download (119KB)
5. Fig. 4. Micrographs and size distributions of Ru catalyst nanoparticles deposited on: (a, b) – mesoporous nanospheric polymer; (c, d) – mesoporous zircon silicate; (d, e) is a mesoporous material based on carbon nanospheres and zirconosilicate.

Download (519KB)
6. Fig. 5. Zr3d spectra decomposed into components for Ru catalysts deposited on: (a) mesoporous zircon silicate; (b) mesoporous material based on carbon nanospheres and zirconosilicate. (1) – Zr4+; (2) – Zrx+ (x ≤ 3).

Download (131KB)
7. Fig. 6. The spectral regions Ru3d and C1s decomposed into components for samples of Ru catalysts applied to: (a) mesoporous material based on carbon nanospheres and zircon silicate; (b) mesoporous zircon silicate; (c) mesoporous nanospheric polymer. C1s (1) – (–C–C–)- and (–C–H)-groups; C1s (2) – (–C–OH)- and (C=O)-groups; C1s (3) – (–SON)-group; Ru3d (1) – doublet from Ru0; Ru3d (2) – doublet from Ru4+.

Download (194KB)
8. Fig. 7. IR spectra of adsorbed pyridine on Ru catalysts.

Download (146KB)
9. Fig. 8. Conversion of furfural and selectivity of formation of its hydrogenation products depending on temperature on Ru- talizers deposited on: (a) mesoporous nanospheric polymer; (b) mesoporous zircon silicate; (c) mesoporous material based on carbon nanospheres and zircon silicate. * Reaction conditions: 3 MPa H2. 2 h, 50 µl of furfural, 4 mg of catalyst, 2 ml of water. ** Other compounds: 2-methylfuran, tetrahydro-2- methylfuran, tetrahydrofurfural, pentanol, pentanediol-1,4, 3- acetyl-1-propanol, 2-cyclopentenone, 4-gyroxy-2- cyclopentone, 2-furfuryl-5-methylfuran, difurfuryl ether.

Download (188KB)
10. Fig. 9. Conversion of furfural and selectivity of formation of its hydrogenation products depending on pressure on Ru catalysts deposited on: (a) mesoporous nanospheric polymer; (b) mesoporous zircon silicate; (c) mesoporous material based on carbon nanospheres and zircon silicate. * Reaction conditions: 170 °C, 2 h, 50 µl of furfural, 4 mg of catalyst, 2 ml of water. ** Others: 2-methylfuran, tetrahydro-2-methylfuran, tetrahydrofurfural, pentanol, pentanediol-1,4, 3-acetyl-1- propanol, 2-cyclopentenone, 4-gyroxy-2-cyclopentenone, 2- furfuryl-5-methylfuran, difurfuryl ether.

Download (172KB)
11. Fig. 10. Conversion of furfural and selectivity of formation of its hydrogenation products depending on the mass of the catalyst on Ru catalysts deposited on: (a) mesoporous nanospheric polymer; (b) Mesoporous zircon silicate; (c) mesoporous material based on carbon nanospheres and zirconosilicate. * Reaction conditions: 170°C, 3 MPa H2. 2 h, 50 µl furfural, 2 ml of water. ** Others: 2-methylfuran, tetrahydro-2-methylfuran, tetrahydrofurfural, pentanol, pentanediol-1,4, 3-acetyl-1- propanol, 2-cyclopentenone, 4-gyroxy-2-cyclopentenone, 2- furfuryl-5-methylfuran, difurfuryl ether.

Download (172KB)
12. Fig. 11. Conversion of furfural and the selectivity of the formation of its hydrogenation products depending on the reaction time on Ru catalysts deposited on: (a) mesoporous nanospheric polymer; (b) Mesoporous zircon silicate; (c) mesoporous material based on carbon nanospheres and zirconosilicate. * Reaction conditions: 170 °C, 3 MPa H2, 50 µl of furfural, 4 mg of catalyst, 2 ml of water. ** Others: 2-methylfuran, tetrahydro-2-methylfuran, tetrahydrofurfural, pentanol, pentanediol-1,4, 3-acetyl-1- propanol, 2-cyclopentenone, 4-gyroxy-2-cyclopentenone, 2- furfuryl-5-methylfuran, difurfuryl ether.

Download (148KB)

Copyright (c) 2024 Russian Academy of Sciences