Methane Pyrolysis in Molten Media for Hydrogen Production: A Review of Current Advances
- Authors: Kudinov I.V.1, Velikanova Y.V.1, Nenashev M.V.1, Amirov T.F.1, Pimenov A.A.1
-
Affiliations:
- Institute of Oil and Gas Technologies, Samara State Technical University
- Issue: Vol 63, No 5 (2023)
- Pages: 627-639
- Section: Articles
- URL: https://edgccjournal.org/0028-2421/article/view/655581
- DOI: https://doi.org/10.31857/S0028242123050015
- EDN: https://elibrary.ru/SBYGPE
- ID: 655581
Cite item
Abstract
This review provides an analysis of prior research on liquid-media methane pyrolysis for hydrogen production. It discusses the experimental studies and reported data on methane pyrolysis in molten metals, molten binary alloys, molten salts, and molten metal–salt media. The experimental data suggest that binary metal alloys are superior to pure metals in terms of catalytic performance. A comparative assessment of catalytic activity showed that the highest performance (methane conversion above 95% at temperatures below 1200°C) has been achieved by molten Ni–Bi and Cu–Bi alloys. Besides the thermobaric conditions and characteristics of the bubbling systems, the media’s reactivity plays a key role in pyrolysis efficiency. The combined use of molten metals and salts as a reaction medium noticeably enhances the methane conversion (due to the catalytic activity of molten metals) and appreciably reduces the content of metal impurities in the carbon product.
Keywords
About the authors
I. V. Kudinov
Institute of Oil and Gas Technologies, Samara State Technical University
Email: igor-kudinov@bk.ru
443100, Samara, Russia
Yu. V. Velikanova
Institute of Oil and Gas Technologies, Samara State Technical University
Email: petrochem@ips.ac.ru
443100, Samara, Russia
M. V. Nenashev
Institute of Oil and Gas Technologies, Samara State Technical University
Email: petrochem@ips.ac.ru
443100, Samara, Russia
T. F. Amirov
Institute of Oil and Gas Technologies, Samara State Technical University
Email: petrochem@ips.ac.ru
443100, Samara, Russia
A. A. Pimenov
Institute of Oil and Gas Technologies, Samara State Technical University
Author for correspondence.
Email: petrochem@ips.ac.ru
443100, Samara, Russia
References
- Keipi T., Tolvanen H., Konttinen J. Economic analysis of hydrogen production by methane thermal decomposition: comparison to competing technologies // Energy Conversion and Management. 2018. V. 159. Р. 264-273. https://doi.org/10.1016/j.enconman.2017.12.063
- Pleshivtseva Y., Derevyanov M., Pimenov A., Rapoport A. Comprehensive review of low carbon hydrogen projects towards the decarbonization pathway // Int. J. of Hydrogen Energy. 2023. V. 48. P. 3703-3724. https://doi.org/10.1016/j.ijhydene.2022.10.209
- Pleshivtseva Y., Derevyanov M., Pimenov A., Rapoport A. Comparative analysis of global trends in low carbon hydrogen production towards the decarbonization pathway // Intern. J. of Hydrogen Energy. 2023. V. 48. P. 32191-32240. https://doi.org/10.1016/j.ijhydene.2023.04.264
- Msheik M., Rodat S., Abanades S. Methane cracking for hydrogen production: a review of catalytic and molten media pyrolysis // Energies. 2021. V. 14. № 11. 3107. https://doi.org/10.3390/en14113107
- Kang D., Palmer, C., Mannini D., Rahimi N., Gordon M.J., Metiu H., McFarland E.W. Catalytic methane pyrolysis in molten alkali chloride salts containing iron // ACS Catalysis. 2020. № 10(13). Р. 7032-7042. https://doi.org/10.1021/acscatal.0c01262
- Parkinson B., Patzschke C. F., Nikolis D., Raman S., Hellgardt K. Molten salt bubble columns for low-carbon hydrogen from CH4 pyrolysis: mass transfer and carbon formation mechanisms // Chem. Eng. J. 2021. V. 417. Р. 127-407. ISSN 1385-8947. https://doi.org/10.1016/j.cej.2020.127407
- Zhao Y.-M., Ren T.-Z., Yuan Z.-Y., Bandosz T.J. Activated carbon with heteroatoms from organic salt for hydrogen evolution reaction // Microporous Mesoporous Mater. 2020. V. 297. 110033. https://doi.org/10.1016/j.micromeso.2020.110033
- Кудинов И.В. Пименов А.А., Михеева Г.В. Моделирование термического разложения метана и образования твердых углеродных частиц // Нефтехимия. 2020. Т. 60. № 6. С. 781-785. https://doi.org/10.31857/S002824212006012X
- Kudinov I.V., Pimenov A.A., Mikheeva G.V. Modeling of the thermal decomposition of methane and the formation of solid carbon particles // Petrol. Chemistry. 2020. V. 60. № 11. P. 1239-1243. https://doi.org/10.1134/S0965544120110122.
- Leal Pérez B.J., Medrano Jiménez J.A., Bhardwaj R., Goetheer E., Sint Annaland M., Gallucci F. Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment // Intern. J. of Hydrogen Energy. 2021. V. 46. № 7. Р. 4917-4935. ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2020.11.079
- Голованчиков А.Б., Козловцев В.А., Прохоренко Н.А., Меренцов Н.А. Перспективы использования водорода, образующегося при пиролизе метана, для производства аммиака // Энерго- и ресурсосбережение: промышленность и транспорт. 2022. № 4(41). С. 13-16.
- Парфенов В.Е., Никитченко Н.В., Пименов А.А., Кузьмин Е.А., Куликова М.В., Чупичев О.Б., Максимов А.Л. Пиролиз метана водородного направления: особенности применения металлических расплавов (обзор) // Журн. прикл. химии. 2020. Т. 93. № 5. С. 611-619. https://doi.org/10.31857/S0044461820050011
- Parfenov V.E., Nikitchenko N.V., Pimenov A.A., Kuz'min A.E., Kulikova M.V., Chupichev O.B., Maksimov A.L. Methane pyrolysis for hydrogen production: specific features of using molten metals // Russian J. Applied Chemistry. 2020. V. 93. № 5. P. 625-632. https://doi.org/10.1134/S1070427220050018.
- Машенцева А.А., Алманов А.А., Айманова А.Н., Жумабаев А.М. Применение гель-полимер электролитов на основе углеродных наноматериалов для разработки устройств хранения энергии - мини обзор // Вестник НЯЦ РК. 2023. № 2. С. 33-42. https://doi.org/10.52676/1729-7885-2023-2-33-42
- Sánchez-Bastardo N., Schlögl R., Ruland H. Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy // Ind. Eng. Chem. Res. 2021. V. 60. № 32. Р. 11855-11881. https://doi.org/10.1021/acs.iecr.1c01679
- Шашок Ж.С. Применение углеродных наноматериалов в полимерных композициях. Под ред. Ж.C. Шашок, Н.Р. Прокопчук. Минск: Белорус. гос. технол. ун-т, 2014. 232 с. ISBN 978-985-530-317-7.
- Korányi T., Németh M., Beck А., Horvath A. Recent advances in methane pyrolysis: turquoise hydrogen with solid carbon production // Energies. 2022. V. 15. P. 6342. https://doi.org/10.3390/en15176342
- Билера И. В., Лебедев Ю. А. Плазмохимическое получение ацетилена из углеводородов: история и современное состояние (обзор) // Нефтехимия. 2022. Т. 62. № 2. С. 154-180.
- Bilera I.V., Lebedev Y.A. Plasma-chemical production of acetylene from hydrocarbons: history and current status (rew.) // Petrol. Chemistry. 2022. V. 62. № 4. Р. 329-351. https://doi.org/10.1134/S0965544122010145.
- Dipu A.L. Methane decomposition into COx-free hydrogen over a Ni based catalyst: an overview // Int. J. Energy Res. 2021. V. 45. P. 9858-9877. https://doi.org/10.1002/er.6541
- Choudhary T.V., Aksoylu E., Goodman D.W. Nonoxidative activation of methane // Catalysis Reviews. 2003. V. 45. №. 1. P. 151-203. http://doi.org/10.1081/CR-120017010
- Upham D.C., Agarwal V., Khechfe A. Snodgrass Z.R., Gordon M.J., Metiu H., McFarland W. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon // Science. 2017. V. 358. I. 6365. P. 917-920. https://doi.org/10.1126/science.aao5023
- Munera Parra A.A., Agar D.W. Molten metal capillary reactor for the high-temperature pyrolysis of methane // Int. J. Hydrogen Energy. 2017. V. 42. № 19. P. 13641-13648. https://doi.org/10.1016/j.ijhydene.2016.12.044
- Kang D., Rahimi N., Gordon M.J., Metiu H., McFarland W. Catalytic methane pyrolysis in molten MnCl2KCl // Appl. Catal., B. 2019. V. 254. P. 659-666. https://doi.org/10.1016/j.apcatb.2019.05.026
- Abdollahi M.R., Nathan G.J., Jafarian M. Process configurations to lower the temperature of methane pyrolysis in a molten metal bath for hydrogen production // Int. J. of Hydrogen Energy. 2023. V. 48. № 100. P. 39805-39822. https://doi.org/10.1016/j.ijhydene.2023.08.186
- Abánades A., Rubbia C., Salmieri D. Thermal cracking of methane into hydrogen for a CO2-free utilization of natural gas // Int. J. of Hydrogen Energy. 2013. V. 38. № 20. P. 8491-8496. https://doi.org/10.1016/j.ijhydene.2012.08.138
- Kudinov I.V., Pimenov A.A., Kryukov Y.A., Mikheeva G.V. A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis in a layer of molten tin // Int. J. of Hydrogen Energy. 2021. V. 46. № 17. P. 10183-10190. https://doi.org/10.1016/j.ijhydene.2020.12.138
- Polimeni S., Binotti M., Moretti L., Manzolini G. Comparison of sodium and KCl-MgCl2 as heat transfer fluids in CSP solar tower with sCO2 power cycles // Solar Energy. 2018. V. 162. P. 510-524. https://doi.org/10.1016/j.solener.2018.01.046
- Steinberg M. The Carnol process for CO2 mitigation from power plants and the transportation sector // Energy Convers. Manage. 1996. V. 37. № 6. P. 843-848. https://doi.org/10.1016/0196-8904(95)00266-9
- Steinberg M. Fossil fuel decarbonization technology for mitigating global warming // Int. J. of Hydrogen Energy. 1999. V. 24. № 8. P. 771-777. https://doi.org/10.1016/S0360-3199(98)00128-1
- Geißler T., Plevan M., Abánades A., Heinzel A., Mehravaran K., Rathnam R.K., Rubbia C., Salmieri D., Stoppel L., Stückrad S., Weisenburger H., Wenninger H., Wetzel Th. Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed // Int. J. of Hydrogen Energy. 2015. 40. P. 14134-14146. https://doi.org/10.1016/j.ijhydene.2015.08.102
- Geißler T., Abánades A., Heinzel A., Mehravaran K., Müller G., Rathnam R.K., Rubbia C., Salmieri D., Stoppel L., Stückrad S., Weisenburger A., Wenninger H., Wetzel T. Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed // Chem. Eng. J. 2016. V. 299. P. 192-200. https://doi.org/10.1016/j.cej.2016.04.066
- Serban M., Lewis M.A., Marshall C.L., Doctor R.D. Hydrogen production by direct contact pyrolysis of natural gas // Energy Fuels. 2003. V. 17. P. 705-713. https://doi.org/10.1021/ef020271q
- Myers R.T. The periodicity of electron affinity // J. Chem. Educ. 1990. V. 67. № 4. P. 307-308. https://doi.org/10.1021/ed067p307
- Rienstra-Kiracofe J.C., Tschumper G.S., Schaefer H.F., Nandi S., Ellison G.B. Atomic and molecular electron affinities: photoelectron experiments and theoretical computation // Chem. Rev. 2002. V. 102 (1). Р. 231-282. https://doi.org/10.1021/cr990044u
- Wang K., Li W.S., Zhou X.P. Hydrogen generation by direct decomposition of hydrocarbons over molten magnesium // J. Mol. Catal. A Chem. 2008. V. 283. P. 153-157. https://doi.org/10.1016/ j.molcata.2007.12.018
- Zeng J., Tarazkar M., Pennebaker T., Gordon M.J., Metiu H., McFarland E.W. Catalytic methane pyrolysis with liquid and vapor phase tellurium // ACS Catal. 2020. № 10. P. 8223-8230. https://doi.org/10.1021/acscatal.0c00805
- Scheiblehner D., Neuschitzer D., Wibner S., Sprung A., Antrekowitsch H. Hydrogen production by methane pyrolysis in molten binary copper alloys // Int. J. of Hydrogen Energy. 2023. V. 48. № 16. P. 6233-6243. https://doi.org/10.1016/j.ijhydene.2022.08.115
- Choudhary T.V., Aksoylu E., Wayne Goodman D. Nonoxidative activation of methane // Catalysis Reviews. 2003. V. 45. № 1. P. 151-203. https://doi.org/10.1081/cr-120017010
- Palmer C., Tarazkar M., Kristoffersen H.H., Gelinas J., Gordon M.J., McFarland E.W., Metiu H. Methane pyrolysis with a molten Cu-Bi alloy catalys // ACS Catal. 2019. V. 9. P. 8337-8345. https://doi.org/10.1021/acscatal.9b01833
- Панфилович К.Б., Валеева Э.Э. Температуры Дебая жидких металлов // Теплофизика и аэромеханика. 2012. Т. 19. № 6. C. 799-802.
- Панфилович К.Б., Валеева Э.Э. Поверхностное натяжение жидких металлов // Вестн. Казанского технол. ун-та. 2006. № 1. С. 131-139.
- Paxman D., Trottier S., Nikoo M., Secanell M., Ordorica-Garcia G. Initial experimental and theoretical investigation of solar molten media methane cracking for hydrogen production // Energy Procedia. 2014. V. 49. Р. 2027-2036. https://doi.org/10.1016/j.egypro.2014.03.215
- Zaghloul N., Kodama S., Sekiguchi H. Hydrogen production by methane pyrolysis in a molten-metal bubble column // Chem. Eng. Technology. 2021. V. 44. P. 1-9. https://doi.org/10.1002/ceat.202100210
- Chen L., Song Z., Zhang S., Chang Ch., Chuang Y., Peng X., Dun Ch., Urban J. J., Guo J., Chen J., Prendergast D., Salmeron M., Somorjai G.A., Su J. Ternary NiMo-Bi liquid alloy catalyst for efficient hydrogen production from methane pyrolysis // Science. 2023. V. 381. P. 857-861. https://doi.org/10.1126/science.adh8872
- Sorcar S., Rosen B.A. Methane pyrolysis using a multiphase molten metal reactor // ACS Catalysis. 2023. V. 13 (15). Р. 10161-10166. https://doi.org/10.1021/acscatal.3c02955
- Heinzel A., Weisenburger A., Müller G. Corrosion behavior of austenitic steel AISI 316L in liquid tin in the temperature range between 280 and 700°C // Materials and Corrosion. 2017. V. 68. № 8. P. 831-837. https://doi.org/10.1002/maco.201609211
- Rahimi N., Kang D., Gelinas J., Menon A., Gordon M.J., Metiu H., McFarland E.W. Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts // Carbon. 2019. V. 151. P. 181-191. https://doi.org/10.1016/j.carbon.2019.05.041
- Rodat S., Abanades S., Coulié J., Flamant G. Kinetic modelling of methane decomposition in a tubular solar reactor // Chem. Eng. J. 2009. V. 146. № 1. Р. 120-127. https://doi.org/10.1016/j.cej.2008.09.008
- Andreini R.J., Foster J.S., Callen R.W. Characterization of gas bubbles injected into molten metals under laminar flow conditions // Metall. Trans. B. 1977. № 8. Р. 625-631. https://doi.org/10.1007/BF02669340
- Plevan M., Geißler T., Abánades A., Mehravaran K., Rathnam R.K., Rubbia C., Salmieri D., Stoppel L., Stückrad S., Wetzel Th. Thermal cracking of methane in a liquid metal bubble column reactor: experiments and kinetic analysis // Int. J. of Hydrogen Energy. 2015. V. 40(25). Р. 8020-8033. https://doi.org/10.1016/j.ijhydene.2015.04.062
- Павлова А.М., Сироткин О.С., Сироткин Р.О. Методики получения уточненных шкал электроотрицательности химических элементов // Вестн. технол. ун-та. 2017. Т. 20. № 3. С. 17-24.
- Patzschke C.F., Parkinson B., Willis J.J., Nandi P., Love A.M., Raman S., Hellgardt K. Co-Mn catalysts for H2 production via methane pyrolysis in molten salts // Chem. Eng. J. 2021. V. 414. P. 128730. https://doi.org/10.1016/j.cej.2021.128730
- Hamdy E., Olovsjö J.N., Geers C. Perspectives on selected alloys in contact with eutectic melts for thermal storage: nitrates, carbonates and chlorides // Solar Energy. 2021. V. 224. P. 1210-1221. https://doi.org/10.1016/j.solener.2021.06.069
- Parkinson B., Patzschke C.F., Nikolis D., Raman S., Dankworth D.C., Hellgardt K. Methane pyrolysis in monovalent alkali halide salts: kinetics and pyrolytic carbon properties // Int. J. of Hydrogen Energy. 2021. V. 46. P. 6225-6238. https://doi.org/10.1016/j.ijhydene.2020.11.150
- Noh Y.G., Lee Y.J., Kim J., Kim Y.K., Ha J.S., Kalanur S.S., Seo H. Enhanced efficiency in CO2-free hydrogen production from methane in a molten liquid alloy bubble column reactor with zirconia beads // Chem. Eng. J. 2022. V. 428. P. 131095. https://doi.org/10.1016/j.cej.2021.131095
Supplementary files
