Технологии получения низкоуглеродных авиационных топлив из биосырья и углекислого газа (обзор)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Обобщена информации о технологиях получения экологически безопасного авиационного топлива из биосырья и СО2. Представлены основные маршруты переработки биосырья различного происхождения и информация об уровне технологического развития соответствующих технологий. Подчеркивается, что наиболее высоким уровнем развития характеризуются технологии переработки триглицеридов жирных кислот, выделяемых из масложирового сырья. Представлены также ключевые особенности предлагаемых схемных решений для переработки СО2 в авиационные топлива. Показано, что наиболее энергозатратной является стадия выделения СО2 из воздуха. Приведены сведения об экологических и экономических аспектах отдельных технологий. На основе опубликованных данных определены наиболее затратные стадии процессов: для биотехнологий основные капитальные затраты связаны с первой стадией конверсии биосырья, а для технологий получения авиатоплив из СО2 – с получением водорода.

Full Text

Restricted Access

About the authors

Мария Владимировна Магомедова

Институт нефтехимического синтеза им. А.В. Топчиева; Институт тонких химических технологий им. М.В. Ломоносова (РТУ МИРЭА)

Author for correspondence.
Email: podlesnaya@ips.ac.ru
ORCID iD: 0000-0003-1008-1580

к.т.н.

Russian Federation, Москва, 119991; Москва, 119454

Екатерина Геннадьевна Галанова

Институт нефтехимического синтеза им. А.В. Топчиева

Email: podlesnaya@ips.ac.ru
ORCID iD: 0000-0003-4570-0548

к.х.н.

Russian Federation, Москва, 119991

Александр Андреевич Порсин

Институт нефтехимического синтеза им. А.В. Топчиева

Email: podlesnaya@ips.ac.ru
ORCID iD: 0000-0001-6393-1134

к.х.н.

Russian Federation, Москва, 119991

Владимир Александрович Лаврентьев

Институт нефтехимического синтеза им. А.В. Топчиева

Email: podlesnaya@ips.ac.ru
ORCID iD: 0000-0002-4394-6950

к.т.н.

Russian Federation, Москва, 119991

Вадим Олегович Самойлов

Институт нефтехимического синтеза им. А.В. Топчиева

Email: podlesnaya@ips.ac.ru
ORCID iD: 0000-0003-2455-8765

к.х.н.

Russian Federation, Москва, 119991

Антон Львович Максимов

Институт нефтехимического синтеза им. А.В. Топчиева

Email: podlesnaya@ips.ac.ru
ORCID iD: 0000-0001-9297-4950

д.х.н., чл.-корр. РАН

Russian Federation, Москва, 119991

References

  1. Grimme W. The Introduction of Sustainable Aviation Fuels-A Discussion of Challenges, Options and Alternatives // Aerospace. 2023. V. 10. P. 218–233. https://doi.org/10.3390/aerospace10030218
  2. Kittel H., Horský J., Simacek P. Synergy of blending HEFA with alternative petroleum fractions // Fuel. 2024. V. 359. № 130390. https://doi.org/10.1016/j.fuel.2023.130390
  3. Hileman J.I., Stratton R.W. Alternative jet fuel feasibility // Transp. Policy. 2014. V. 34. P. 52–62. https://doi.org/10.1016/j.tranpol.2014.02.018
  4. Pires A.P.P., Han Y., Kramlich J., Garcia-Perez M. Chemical composition and fuel properties of alternative jet fuels // BioResources. 2018. V. 13. № 2. P. 2632–2657. https://doi.org/10.15376/biores.13.2.2632-2657
  5. García-Contreras R., Soriano J.A., Gómez A., Fernández-Yáñez P. Sustainable Alternatives for Aviation Fuels. Elsevier. 2022. ID 181. https://doi.org/10.1016/B978-0-323-85715-4.00009-4
  6. Kittel H., Horský J., Šimáček P. Properties of Selected Alternative Petroleum Fractions and Sustainable Aviation Fuels // Processes. 2023. V. 11. ID 935. https://doi.org/10.3390/pr11030935
  7. Vozka P., Šimáček P., Kilaz G. Impact of HEFA Feedstocks on Fuel Composition and Properties in Blends with Jet A // Energy Fuels. 2018. V. 32. № 11. P. 11595–11606. https://doi.org/10.1021/acs.energyfuels.8b02787
  8. ASTM D7566-20c. Standart Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons. 2021.
  9. Черепанова А.Д., Чернышова А.В., Колобков Б.И. Обзор технологий получения синтетических углеводородных топлив для реактивных двигателей // Хим. Пром. Сегодня. 2022. № 1. С. 54–63.
  10. Morgan P. An overview of Sasol’s jet fuel journey // 20th World Petroleum Congress. Doha, Qatar. December 4–8. 2011.
  11. Dyk S., Su J., McMillan J.D., Saddler J.N. ‘DROP-IN-BIOFUELS’: The key role that co-processing will play in its production. IEA Bioenergy. 2019.156 p.
  12. Maniatis K., Weitz M., Zschocke A. 2 million tons per year: A performing biofuels supply for EU aviation. European Commission. Brussels. 2013. P. 37.
  13. Dahal K., Brynolf S., Xisto C., Hansson J., Grahn M., Grönstedt T., Lehtveer M. Techno-economic review of alternative fuels and propulsion systems for the aviation sector // Renew. Sustain. Energy Rev. 2021. V. 151. № 111564. https://doi.org/10.1016/j.rser.2021.111564
  14. Li X., Luo X., Jin Y., Li J., Zhang H., Zhang A., Xie J. Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels // Renewable and Sustainable Energy Reviews. 2018. V. 82. P. 3762–3797. https://doi.org/10.1016/j.rser.2017.10.091
  15. Neuling U., Kaltschmitt M. Biokerosene from Vegetable Oils – Technologies and Processes // Biokerosene. 2017. P. 475–496. https://doi.org/10.1007/978-3-662-53065-8_19
  16. Mawhood R., Gazis E., Jong S., Hoefnagels R., Slade R. Production pathways for renewable jet fuel: a review of commercialization status and future prospects // Biofuels. BioProd. Bioref. 2016. V. 10. № 4. P. 462–484. https://doi.org/10.1002/bbb.1644
  17. Sapp M. Hainan Airlines flight powered by 50% biofuel between Shanghai and Beijing. Biofuels Digest. URL: https://www.biofuelsdigest.com/bdigest/hainan-airlines-flight-powered-by-50-biofuel-between-shanghai-and-beijing/ (дата обращения 01.10.2024)
  18. Sapp M. Hainan Airways flies to Chicago on UCO blend as part of Sino-US cooperation. Biofuels Digest. URL: https://www.biofuelsdigest.com/bdigest/hainan-airways-flies-to-chicago-on-uco-blend-as-part-of-sino-us-cooperation/ (дата обращения 01.10.2024)
  19. Tomas J.P. OMV Petrom to invest over $806 million in biofuel plants in Romania. Biofuels Digest. URL: https://www.biofuelsdigest.com/bdigest/omv-petrom-to-invest-over-806-billion-in-biofuel-plants-in-romania/ (дата обращения 01.10.2024)
  20. ASTM D1655-20, Standard Specification for Aviation Turbine Fuels. 2020.
  21. Li L., Coppola E., Rine J., Miller J.L., Walker D. Catalytic hydrothermal conversion of triglycerides to non-ester biofuels // Energy Fuels. 2010. V. 24. № 2. P. 1305–1315. https://doi.org/10.1021/ef901163a
  22. Bacovsky D., Dallos M., Wörgetter M. Status of 2nd Generation Biofuels Demonstration Facilities in June 2010. IEA Bioenergy. 2010. 126 p.
  23. Solena Group, Inc. USAID–USEA Workshop: renewable energy. 2009.
  24. Balan V., Chiaramonti D., Kumar S. Review of US and EU initiatives toward development, demonstration and commercialization of lignocellulosic biofuels // Biofuel Bioprod. Bioref. 2013. V. 7. № 6. P. 732–759. https://doi.org/10.1002/bbb.1436
  25. Viguié J.-Ch., Ullrich N., Porot P., Bournay L., Hecquet M., et al. BioTfueL project: targeting the development of second-generation biodiesel and biojet fuels // Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles. 2013. V. 68. № 5. P. 953–946.
  26. Fulcrum successfully starts its Sierra biofuels plant operations. Biofuel International. 2022. URL: https://biofuels-news.com/news/fulcrum-successfully-starts-operations-of-its-sierra-biofuels-plant/ (дата обращения 01.10.2024)
  27. Sapp M. Velocys completes and delivers four reactors to Red Rock Biofuels // Biofuel Digest. 2020. URL: https://www.biofuelsdigest.com/bdigest/velocys-completes-and-delivers-four-reactors-to-red-rock-biofuels/ (дата обращения 01.10.2024)
  28. Sapp M. Red Rock Biofuels, Frontline BioEnergy successfully test SAF technology. Biofuel Digest. 2022. URL: https://www.biofuelsdigest.com/bdigest/red-rock-biofuels-and-frontline-bioenergy-successfully-test-saf-technology/ (дата обращения 01.10.2024)
  29. Garsia F., Marchand Ph. Amyris-Total Biojet fuel Breakthrough Solution for Aviation. ICAO HQ. Montreal, Canada. 2014.
  30. Shah Y.T. Water for Energy and Fuel Production. CRC Press. 2014. 440 p.
  31. Рахманкулов Д.Н., Вильданов Ф.Ш., Николаева С.В., Денисов С.В. Успехи и проблемы производства альтернативных источников топлива и химического сырья. Пиролиз биомассы // Башкирский химический журнал. 2008. Т. 15. № 2. С. 36–50.
  32. Diederichs G.W., Mandegari M.A., Farzad S., Görgens J.F. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice // Bioresour. Technol. 2016. V. 216. P. 331–339. https://doi.org/10.1016/j.biortech.2016.05.090
  33. Wei H., Liu W., Chen X., Yang Q., Li J., Chen H. Renewable bio-jet fuel production for aviation: A review // Fuel. 2019. V. 254. ID 115599. https://doi.org/10.1016/j.fuel.2019.06.007
  34. Kennes D., Abubackar H.N., Diaz M., Veiga M.C., Kennes C. Bioethanol production from biomass: carbohydrate vs syngas fermentation // J. Chem. Technol. Biotechnol. 2016. V. 91. № 2. P. 304–317. https://doi.org/10.1002/jctb.4842
  35. Pechstein J., Neuling U., Gebauer J., Kaltschmitt M. Alcohol-to-Jet (AtJ) // Biokerosene. Springer Berlin Heidelberg; 2018. P. 543–574. https://doi.org/10.1007/978-3-662-53065-8_21
  36. Rochón E., Cortizo G., Cabot M.I., García Cubero M.T., Coca M., Ferrari M.D., Lareo C. Bioprocess intensification for isopropanol, butanol and ethanol (IBE) production by fermentation from sugarcane and sweet sorghum juices through a gas stripping-pervaporation recovery process // Fuel. 2020. V. 281. ID 118593. https://doi.org/10.1016/j.fuel.2020.118593
  37. Bastian S., Liu X., Meyerowitz J.T., Snow C.D., Chen M.M.Y., Arnold F.H. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli // Metab. Eng. 2011. V. 13. № 3. P. 345–352. https://doi.org/10.1016/j.ymben.2011.02.004
  38. Дементьев К.И., Дементьева О.С., Иванцов М.И., Куликова М.В., Магомедова М.В., Максимов А.Л., Лядов А.С., Старожицкая А.В., Чудакова М.В. Перспективные направления переработки диоксида углерода с использованием гетерогенных катализаторов (Обзор) // Нефтехимия. 2022. Т. 62. № 3. С. 289–327. https://doi.org/10.31857/S0028242122030017 [Dement’ev K.I., Dementeva O.S., Ivantsov M.I., Kulikova M.V., Magomedova M.V., Maximov A.L., Lyadov A.S., Starozhitskaya A.V., Chudakova M.V. Promising Approaches to Carbon Dioxide Processing Using Heterogeneous Catalysts (A Review) // Petrol. Chemistry. 2022. V. 62. P. 445-474. https://doi.org/10.1134/S0965544122050012]
  39. Kadlecek D. Methanol to Jet (MTJ) – ASTM D02.0J AC724 Task Force // URL: https://www.caafi.org/resources/pdf/Methanol-to-Jet_CAAFI_Kadlecek_07_25_2023.pdf (дата обращения 10.10.2024)
  40. Beato P. Methanol to jet fuel (mtj) process // Patent WO N 2022063994A1, 2021.
  41. Matur A., Chakrabarti D., Blommel J.M., Hoehn R.K., Paustian J.S., Serban M. Process for converting olefins to jet fuel with olefin recycle // Patent US N 2024/0247198А1. 2024. https://patentscope.wipo.int/search/en/detail.jsf? docId=US435746703&_cid=P10-M3MMLT-23554-1
  42. Shahriar M.F., Khanal A. The current techno-economic, environmental, policy status and perspectives of sustainable aviation fuel (SAF) // Fuel. 2022. V. 325. ID 124905. https://doi.org/10.1016/j.fuel.2022.124905
  43. Zemanek D., Champagne P., Mabee W. Review of life‐cycle greenhouse‐gas emissions assessments of hydroprocessed renewable fuel (HEFA) from oilseeds // Biofuels, Bioprod. Biorefining. 2020. V. 14. № 5. P. 935–949. https://doi.org/10.1002/bbb.2125
  44. Bauen A., Bitossi N., German L., Harris A., Leow Kh. Sustainable Aviation Fuels. Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation // Johnson Matthey Tech. Review. 2020. V. 64 (3). P. 263–278. https://doi.org/10.1595/205651320X15816756012040
  45. Wang W.C., Tao L. Bio-jet fuel conversion technologies // Renew. Sustain. Energy Rev. 2016. V. 53. P. 801–822. https://doi.org/10.1016/j.rser.2015.09.016
  46. Drünert S., Neuling U., Zitscher T., Kaltschmitt M. Power-to-Liquid fuels for aviation – Processes, resources and supply potential under German conditions // Appl. Energy. 2020. V. 277. ID 115578. https://doi.org/10.1016/j.apenergy.2020.115578
  47. Shahriar F., Khanal A. The current techno-economic, environmental, policy status and perspectives of sustainable aviation fuel (SAF) // Fuel. 2022. V. 325. ID 124905. https://doi.org/10.1016/j.fuel.2022.124905
  48. Peacock J., Cooper R., Waller N., Richardson G. Decarbonising aviation at scale through synthesis of sustainable e-fuel: A techno-economic assessment // Int. J. of Hydrogen Energy. 2024. V. 50. P. 869–890. https://doi.org/10.1016/j.ijhydene.2023.09.094

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Forecast of global demand for aviation fuel.

Download (24KB)
3. Fig. 2. General scheme of processing biomass of various origins.

Download (115KB)
4. Fig. 3. Hydrocarbon content in Jet A-1 fuel and fuel obtained by hydroprocessing of Camelina camelina oil.

Download (13KB)
5. Fig. 4. The influence of biofuel content on the relative change in the properties of aviation fuel: a) calorific value; b) freezing point (cloud point); c) viscosity; d) density [5].

Download (52KB)
6. Fig. 5. Schematic diagrams of Ecofining™ and UOP Renewable Jet Process™ technologies.

Download (38KB)
7. Fig. 6. Scheme of catalytic thermolysis of vegetable oil using Biofuels Iso-Conversion technology.

Download (4KB)
8. Fig. 7. Schematic diagram of the Bioliq pilot plant based on Carbo-V technology for biomass gasification.

Download (34KB)
9. Fig. 8. Scheme of biomass conversion into aviation fuel using BioTfuels technology.

Download (5KB)
10. Fig. 9. Scheme of technology for obtaining aviation fuel from sugar cane (BiofeneTM).

Download (4KB)
11. Fig. 10. Scheme of biomass conversion into aviation fuel using BioForming technology from Virent.

Download (68KB)
12. Fig. 11. Synthesis of ethanol, isopropanol and butanols from biomass by enzymatic fermentation.

Download (9KB)
13. Fig. 12. Technology for capturing CO2 from the air, Carbon Engineering.

Download (29KB)
14. Fig. 13. Operating (a) and capital (b) costs for technologies for producing fuels from bio-raw materials [47].

Download (30KB)
15. Fig. 14. Cost of aviation fuel obtained from various raw materials and using various energy sources [48].

Download (29KB)

Copyright (c) 2024 Russian Academy of Sciences