Получение и фотокаталитические свойства допированного рутением диоксида титана

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Разработана методика получения фотокатализаторов на основе допированного рутением диоксида титана при использовании рутенийсилоксанового олигомера и нанокристаллического диоксида титана. Исследовано влияние допирования рутением (0,1–1,0 мас.%) на фотокаталитическую активность диоксида титана в УФ- и видимом свете. Деградация красителя кристаллического фиолетового составляет 92% при УФ-воздействии в течение 2 ч для образца 0,5% Ru/TiO2, массовое содержание рутения в котором составило 0,47%.

Full Text

Restricted Access

About the authors

Алексей Александрович Садовников

Институт нефтехимического синтеза им. А.В. Топчиева РАН; Институт общей и неорганической химии им. Н.С. Курнакова РАН

Author for correspondence.
Email: sadovnikov@ips.ac.ru
ORCID iD: 0000-0002-3574-0039
Russian Federation, Москва; Москва

Евгений Русланович Наранов

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: sadovnikov@ips.ac.ru
ORCID iD: 0000-0002-3815-9565

к.х.н.

Russian Federation, Москва

Владислав Витальевич Судьин

Институт металлургии и материаловедения им. А.А. Байкова РАН

Email: sadovnikov@ips.ac.ru
ORCID iD: 0000-0001-9091-855X

к.ф.-м.н.

Russian Federation, Москва

Александр Николаевич Тарасенков

Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН

Email: sadovnikov@ips.ac.ru
ORCID iD: 0000-0003-0723-2771

к.х.н.

Russian Federation, Москва

Азиз Мансурович Музафаров

Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН; Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: sadovnikov@ips.ac.ru
ORCID iD: 0000-0002-3050-3253

д.х.н., академик РАН

Russian Federation, Москва; Москва

Антон Львович Максимов

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: sadovnikov@ips.ac.ru
ORCID iD: 0000-0001-9297-4950

д.х.н., член-корр. РАН

Москва

References

  1. Nakata K., Fujishima A. TiO2 photocatalysis: Design and applications // J. Photochem. Photobiol. C. 2012. V. 13. № 3. P. 169–189. https://dx.doi.org/10.1016/j.jphotochemrev.2012.06.001
  2. Li Z., Wang S., Wu J., Zhou W. Recent progress in defective TiO2 photocatalysts for energy and environmental applications // Renewable Sustainable Energy Rev. 2022. V. 156. ID 111980. https://dx.doi.org/10.1016/j.rser.2021.111980
  3. Wang C., Liu H. L, Qu Y. TiO2‐based photocatalytic process for purification of polluted water: bridging fundamentals to applications // J. Nanomater. 2013. V. 2013. № 1. ID 319637. https://dx.doi.org/10.1155/2013/319637
  4. Belver C., Bedia J., Gómez-Avilés A., Peñas-Garzón M., Rodriguez J.J. Semiconductor photocatalysis for water purification // Nanoscale Materials in Water Purification. 2019. P. 581–651. https://dx.doi.org/10.1016/B978-0-12-813926-4.00028-8
  5. Gołąbiewska A., Malankowska A., Jarek M., Lisowski W., Nowaczyk G., Jurga S., Zaleska-Medynska A. The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2 // Appl. Catal., B. 2016. V. 196. P. 27–40. https://dx.doi.org/10.1016/j.apcatb.2016.05.013
  6. Su R., Tiruvalam R., He Q., Dimitratos N., Kesavan L., Hammond C., Lopez-Sanchez J.A., Bechstein R., Kiely C.J., Hutchings G.J., Besenbacher F. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au–Pd nanoparticles // ACS Nano. 2012. V. 6. № 7. P. 6284–6292. https://dx.doi.org/10.1021/nn301718v
  7. Jin C., Dai Y., Wei W., Ma X., Li M., Huang B. Effects of single metal atom (Pt, Pd, Rh and Ru) adsorption on the photocatalytic properties of anatase TiO2 // Appl. Surf. Sci. 2017. V. 426. P. 639–646. https://dx.doi.org/10.1016/j.apsusc.2017.07.065
  8. Naranov E.R., Sadovnikov A.A., Arapova O.V., Bugaev A.L., Usoltsev O.A., Gorbunov D.N., Russo V., Murzin D.Y., Maximov A.L. Mechanistic insights on Ru nanoparticle in situ formation during hydrodeoxygenation of lignin-derived substances to hydrocarbons // Catal. Sci. Technol. The Royal Soc. of Chemistry, 2023. V. 13. № 5. P. 1571–1583. https://dx.doi.org/10.1039/D2CY01127A
  9. Tian J., Li J., Wei N., Xu X., Cui H., Liu H. Ru nanoparticles decorated TiO2 nanobelts: A heterostructure towards enhanced photocatalytic activity and gas-phase selective oxidation of benzyl alcohol // Ceram. Int. 2016. V. 42. № 1. P. 1611–1617. https://dx.doi.org/10.1016/j.ceramint.2015.09.112
  10. Shen X., Garces L.-J., Ding Y., Laubernds K., Zerger R.P., Aindow M., Neth E.J., Suib S.L. Behavior of H2 chemisorption on Ru/TiO2 surface and its application in evaluation of Ru particle sizes compared with TEM and XRD analyses // Appl. Catal., A. 2008. V. 335. № 2. P. 187–195. https://dx.doi.org/10.1016/j.apcata.2007.11.017
  11. Zhang Y., Su X., Li L., Qi H., Yang C., Liu W., Pan X., Liu X., Yang X., Huang Y., Zhang T. Ru/TiO2 catalysts with size-dependent metal/support interaction for tunable reactivity in Fischer–Tropsch synthesis // ACS Catal. 2020. V. 10. № 21. P. 12967–12975. https://dx.doi.org/10.1021/acscatal.0c02780
  12. Zaera F. Nanostructured materials for applications in heterogeneous catalysis // Chem. Soc. Rev. 2013. V. 42. № 7. P. 2746–2762. https://dx.doi.org/10.1039/C2CS35261C
  13. Anisimov A.A., Minyaylo E.O., Shakirova A.R., Shchegolikhina O.I. Evolution of organometallasiloxanes // Polym. Sci. Ser. C. 2023. V. 65. № 2. P. 230–258. https://dx.doi.org/10.1134/S181123822370042X
  14. Levitsky M.M., Yalymov A.I., Kulakova A.N., Petrov А.А., Bilyachenko А.N. Cage-like metallasilsesquioxanes in catalysis: A review // J. Mol. Catal. A: Chem. 2017. V. 426. P. 297–304. https://dx.doi.org/10.1016/j.molcata.2016.06.016
  15. Ребров Е.А., Музафаров А.М., Жданов А.А. Натрийоксиорганоалкоксисиланы — реагенты для направленного синтеза функциональных органосилоксанов // ДАН. 1988. V. 302. № 2. P. 346.
  16. Tebeneva N.A., Meshkov I.B., Тarasenkov А.N., Polshchikova N.V., Кalinina A.A., Buzin M.I., Serenko О.А., Zubavichus Y.V., Katsoulis D.E., Мuzafarov А.М. Polyfunctional branched metallosiloxane oligomers and composites based on them // J. Organomet. Chem. 2018. V. 868. P. 112–121. https://dx.doi.org/10.1016/j.jorganchem.2018.04.011
  17. Tarasenkov A.N., Parshina M.S., Tebeneva N.A., Borisov K.M., Goncharuk G.P., Shevchenko V.G., Ponomarenko S.A., Muzafaro A.M. Metalloalkoxysiloxanes-cured polydimethylsiloxane compositions filled with silica component for special applications: dielectric and mechanical properties // Express Polym. Lett. 2022. V. 16. № 8. P. 846–870. https://dx.doi.org/10.3144/expresspolymlett.2022.62
  18. Parshina M.S., Tarasenkov A.N., Aysin R.R., Tebeneva N.A., Buzin M.I., Afanasyev E.S., Serenko O.A, Muzafarov A.M. Monitoring the curing processes of epoxy oligomers with partially substituted polyethoxymetallosiloxanes by IR spectroscopy and thermomechanical analysis // J. of Applied Polymer Sci. 2021. V. 138. № 36. ID 50918. https://dx.doi.org/10.1002/app.50918
  19. Andropova U.S., Tebeneva N.A., Serenko O.A., Tarasenkov A.N., Buzin M.I., Shaposhnikova V.V., Muzafarov A.M. Nanocomposites based on polyarylene ether ketones from sol–gel process: Characterizations and prospect applications // Mater. Des. 2018. V. 160. P. 1052–1058. https://dx.doi.org/10.1016/j.matdes.2018.10.033
  20. Andropova U., Serenko O., Tebeneva N., Tarasenkov A., Buzin M., Afanasyev E., Sapozhnikov D., Bukalov S., Leites L., Aysin R., Polezhaev A., Naumkin A., Novikov L., Chernik V., Voronina E., Muzafarov A. Atomic oxygen erosion resistance of polyimides filled hybrid nanoparticles // Polym. Test. 2020. V. 84. ID 106404. https://dx.doi.org/10.1016/j.polymertesting.2020.106404
  21. Elsalamony R.A., Mahmoud S.A. Preparation of nanostructured ruthenium doped titania for the photocatalytic degradation of 2-chlorophenol under visible light // Arabian J. of Chemistry. 2017. V. 10. № 2. P. 194–205. https://dx.doi.org/10.1016/j.arabjc.2012.06.008
  22. Gong B., Wu P., Yang J., Peng X., Deng H., Yin G. Electrochemical and photocatalytic properties of Ru-doped TiO2 nanostructures for degradation of methyl orange dye // Int. J. Electrochem. Sci. 2021. V. 16. № 2. ID 21023. https://dx.doi.org/10.20964/2021.02.18
  23. Nguyen-Phan T.-D., Luo S., Vovchok D., Llorca J., Sallis S., Kattel S., Xu W., Piper L.F.J., Polyansky D.E., Senanayake S.D., Stacchiola D.J., Rodriguez J.A. Three-dimensional ruthenium-doped TiO2 sea urchins for enhanced visible-light-responsive H2 production // Phys. Chem. Chem. Phys. 2016. V. 18. № 23. P. 15972–15979. https://dx.doi.org/10.1039/C6CP00472E.
  24. Senthilnanthan M., Ho D.P., Vigneswaran S., Ngo H.H., Shon H.K. Visible light responsive ruthenium-doped titanium dioxide for the removal of metsulfuron-methyl herbcide in aqueous phase // Separation and Purification Technology. 2010. V. 75. № 3. P. 415–419. https://dx.doi.org/10.1016/j.seppur.2010.05.019
  25. Sadovnikov A.A., Baranchikov A.E., Zubavichus Y.V., Ivanova O.S., Murzin V.Y., Kozik V.V., Ivanov V.K. Photocatalytically active fluorinated nano-titania synthesized by microwave-assisted hydrothermal treatment // J. Photochem. Photobiol. A. 2015. V. 303–304. P. 36–43. https://dx.doi.org/10.1016/j.jphotochem.2015.01.010
  26. Sadovnikov A.A., Nechaev E.G., Beltiukov A.N., Gavrilov A.I., Makarevich A.M., Boytsova O.V. Titania mesocrystals: working surface in photocatalytic reactions // Russ. J. Inorg. Chem. 2021. V. 66. № 4. P. 460–467. https://dx.doi.org/10.1134/S0036023621040197
  27. Zhou J., Gao Z., Xiang G., Zhai T., Liu Z., Zhao W., Liang X., Wang L. Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation // Nat. Commun. 2022. V. 13. № 1. ID 327. https://dx.doi.org/10.1038/s41467-021-27910-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of TiO2 samples obtained by hydrothermal-microwave treatment and using ruthenium siloxane oligomer and ruthenium(III) chloride.

Download (172KB)
3. Fig. 2. Scheme for obtaining ruthenium siloxane Ru(Me)3-0.

Download (60KB)
4. Fig. 3. 1H NMR spectrum of ruthenium siloxane Ru(Me)3-0.

Download (89KB)
5. Fig. 4. Scheme of condensation of ruthenium siloxane Ru(Me)3-0 and its addition to a hydroxyl-containing substrate on the surface of titanium dioxide.

Download (139KB)
6. Fig. 5. Absorption spectra and reconstructed spectra in Tauc coordinates of the initial titanium dioxide, ruthenium siloxane oligomer and their interaction product.

Download (180KB)
7. Fig. 6. SEM images of samples: (a) 0.1% Ru/TiO2, (b) 0.5% Ru/TiO2, (c) 1.0% Ru/TiO2.

Download (242KB)
8. Fig. 7. XPS spectra: (a) C1s + Ru3d, (b) Si2p and Cl2p, (c) O1s of 0.5% Ru/TiO2 and 0.5% Ru(Cl)TiO2 catalysts, respectively.

Download (364KB)
9. Fig. 8. TEM images: (a) 0.5% Ru/TiO2 sample, (b) 0.5% Ru(Cl)TiO2 sample.

Download (420KB)
10. Fig. 9. Comparison of the rate of photocatalytic decomposition of crystal violet dye in the presence of different titanium dioxide samples: (a) under UV irradiation, (b) under visible light irradiation.

Download (243KB)

Copyright (c) 2025 Russian Academy of Sciences