The effect of the composition of plant residues on soluble organic substances formed in forest litters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review examines published data on the composition, properties, dynamics and amounts of DOM formed in the litter of forest soils. The amount and properties of DOM depend on the composition of plant residues forming the litter horizon. In most cases, the leaf litter DOM differs from the fall of needles in a high content of nitrogen, polyphenolic compounds, carbohydrates, hydrophobic acids, higher extinction coefficients and a lower C/N ratio. However, DOM properties and quantity are significantly influenced by the genus and species of plants, leaves and needles age, and growing conditions. In situ the stock of forest litter plays an important role, therefore, DOM concentrations in soil solutions of coniferous litter are higher than deciduous ones. With decomposition of organic residues, DOM quantity and variety of water-soluble organic compounds decreases, the proportion of hydrophobic and hydrophilic acids and aliphatic compounds increases. The composition of the soluble transformation products of litter inherits proportions, structural features and resistance to biodegradation of the original components. Forecasting the composition and rate of production of DOM in forest soils requires taking into account the litter character (ratio of different subhorizons), composition and transformation conditions of the plant debris.

About the authors

E. I. Karavanova

Lomonosov Moscow State University

Author for correspondence.
Email: karavanovaei@mail.ru
Russian Federation, Moscow, 119991

References

  1. Базилевич Н.И., Титлянова А.А. Биотический круговорот на пяти континентах. Новосибирск: Изд-во СО РАН, 2008. 376 с.
  2. Гордеева В.А. Фитомасса и темпы ее разложения в травяных сообществах в условиях техногенного загрязнения почвы. Дис. … канд. биол. наук. Нижний Новгород, 2017. 228 с.
  3. Кононова М.М. Органическое вещество почвы. М.: Изд-во АН СССР, 1963. 314 с.
  4. Мухортова Л.В. Анализ трансформации лесной подстилки в 25-летних хвойных культурах // Лесоведение. 2008. Т. 5. С. 36–44.
  5. Паршина Е.К. Деструкция растительного вещества в болотных экосистемах таежной и лесотундровой зон Западной Сибири. Дис. ... канд. биол. наук. Томск, 2009. 213 с.
  6. Прокушкин С.Г., Степень Р.А., Прокушкин А.С., Каверзина Л.Н. Водорастворимые органические вещества сосновых подстилок и их аллелопатическая роль // Химия растительного сырья. 1998. № 3. С. 13–20.
  7. Семенов В., Лебедева Т., Зинякова Н., Хромычкина Д., Соколов Д., Гереню В., Кравченко И., Ли Х., Семенов М. Зависимость разложения органического вещества почвы и растительных остатков от температуры и влажности в длительных инкубационных экспериментах // Почвоведение. 2022. № 7. С. 860–875. https://doi.org/10.31857/S0032180X22070085
  8. Функционирование микробных комплексов верховых торфяников – анализ причин медленной деструкции торфа. М.: Товарищество научных изданий КМК, 2013. 128 с.
  9. Currie W.S., Aber J.D., McDowel W.H, Boone R.D., Magill A.H. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests// Biogeochemistry. 1996. V. 35. P. 471–505. https://doi.org/10.1007/BF02183037
  10. D’Andrilli J., Junker J.R., Smith H.J., Scholl E.A., Foreman C.M. DOM composition alters ecosystem function during microbial processing of isolated sources // Biogeochemistry. 2019. V. 142. P. 281–298. https://doi.org/10.1007/s10533-018-00534-5
  11. Don A., Kalbitz K. Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages // Soil Biol Biochem. 2005. V. 37. P. 2171–2179. https://doi.org/10.1016/j.soilbio.2005.03.019
  12. Fröberg M., Berggren D., Bergkvist B., Bryant C., Knicker H. Contributions of Oi, Oe and Oa horizons to dissolved organic matter in forest floor leachates // Geoderma. 2003. V. 113. P. 311–322. https://doi.org/10.1016/S0016-7061(02)00367-1
  13. Fröberg M., Hansson K., Kleja D.B., Alavi G. Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch stands in southern Sweden // Forest Ecol. Managem. 2011. V. 262. P. 1742–1747. https://doi.org/10.5194/bg-17-581-2020
  14. Hansson K. Impact of tree species on carbon in forest soils. Doctoral Thesis. Dep. Ecology. Faculty of Natural Resources and Agricultural Sciences. Swedish University of Agricultural Sciences. Uppsala, 2011. 56 p.
  15. Heim A., Frey B. Early-stage litter decomposition rates for Swiss forests // Biogeochemistry. 2004. V. 70. P. 301–315. https://doi.org/10.1007/s10533-003-0844-5
  16. Hensgens G., Lechtenfeld O.J., Guillemette F., Laudon H., Berggren M. Impacts of litter decay on organic leachate composition and reactivity // Biogeochemistry. 2021. V. 154 P. 99–117. https://doi.org/10.1007/s10533-021-00799-3
  17. Hilli S., Stark S., Derome J. Water-extractable organic compounds in different components of the litter layer of boreal coniferous forest soils along a climatic gradient // Boreal Env. Res. 2008. V. 13. P. 92–106.
  18. Kiikkilä O., Kitunen V., Smolander A. Dissolved soil organic matter from surface organic horizons under birch and conifers: degradation in relation to chemical characteristics // Soil Biol. Biochem. 2006. V. 38. P. 737–746. https://doi.org/10.1016/j.soilbio.2005.06.024
  19. Kiikkila O., Kitunen V., Smolander A. Properties of dissolved organic matter derived from silver birch and Norway spruce stands: Degradability combined with chemical characteristics // Soil Biol Biochem. 2011. V. 43. P. 421–430. https://doi.org/10.1016/j.soilbio.2010.11.011
  20. Leenheer J.A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters // Environ. Sci. Technol. 1981. V. 15. P. 578–587. https://doi.org/10.1021/es00087a010
  21. Lindroos A.-J., Derome J., Derome K., Smolander· A. The effect of Scots pine, Norway spruce and silver birch on the chemical composition of stand throughfall and upper soil percolation water in northern Finland // Boreal Environ. Res. 2011.V. 16. P. 240–250. http://hdl.handle.net/10138/231896
  22. Michalzik B., Kalbitz K., Park J.-H., Solinger S., Matzner E. Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests // Biogeochemistry. 2001. V. 52. P. 173–205. https://doi.org/10.1023/A:1006441620810
  23. Müller M., Alewell C., Hagedorn F. Effective retention of litter-derived dissolved organic carbon in organic layers // Soil Biol. Biochem. 2009.V. 41. P. 1066–1074. https://doi.org/10.1016/j.soilbio.2009.02.007
  24. Neff J., Asner G. Dissolved organic carbon in terrestrial ecosystems: synthesis and a model // Ecosystems. 2001. V. 4. P. 29–48. https://doi.org/10.1007/s100210000058
  25. Prescott C., Vesterdal L. Decomposition and transformations along the continuum from litter to soil organic matter in forest soils // Forest Ecol. Managem. 2021. V. 498. P. 119522. https://doi.org/10.1016/j.foreco.2021.119522
  26. Qualls R., Haines B, Swank W. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest // Ecology. 1991. V. 72. P. 254–266. https://doi.org/10.2307/1938919
  27. Sanderman J., Baldock J.A. Amundson R. Dissolved organic carbon chemistry and dynamics in contrasting forest and grassland soils // Biogeochemistry. 2008. V. 89. P. 181–198. https://doi.org/10.1007/s10533-008-9211-x
  28. Sepáková Š., Frouz J. Changes in chemical composition of litter during decomposition: a review of published 13C NMR spectra // J. Soil Sci. Plant Nutrition. 2015. V. 15. P. 805–815. http://dx.doi.org/10.4067/S0718-95162015005000055
  29. Smolander A., Kitunen V. H. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species // Soil Biol. Biochem. 2002. V. 3. P. 651–660. https://doi.org/10.1016/S0038-0717(01)00227-9
  30. Strobel B.W., Hansen H.C.B., Borggaard O.K., Andersen M.K., Raulund-Rasmussen K. Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type // Biogeochemistry. 2001. V. 56. P. 1–26. https://doi.org/10.1023/A:1011934929379
  31. Suominen K., Kitunen V., Smolander A. Characteristics of dissolved organic matter and phenolic compounds in forest soils under silver birch (Betula pendula), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) // Eur. J. Soil Sci. 2003. V. 54. P. 287–293. https://doi.org/10.1046/j.1365-2389.2003.00524.x
  32. Thieme L., Graeber D., Hofmann D., Bischoff S., Schwarz M., Steffen B., Meyer U.-N., Kaupenjohann M., Wilcke W., Michalzik B., Siemens J. Dissolved organic matter characteristics of deciduous and coniferous forests with variable management: Different at the source, aligned in the soil // Biogeosciences. 2019. V. 16. Р. 1411–1432. https://doi.org/10.5194/bg-16-1411-2019
  33. Traversa A., D’Orazio V., Senesi N. Properties of dissolved organic matter in forest soils: influence of different plant covering // Forest Ecol. Management. 2008. V. 256. P. 2018–2028. https://doi.org/10.1016/j.foreco.2008.07.038
  34. Uselman S.M., Qualls R.G., Lilienfein J. Quality of soluble organic C, N, and P produced by different types and species of litter: Root litter versus leaf litter // Soil Biol. Biochem. 2012. V. 54. P. 57–67. https://doi.org/10.1016/j.soilbio.2012.03.021
  35. Wershaw R.L., Rutherford D.W., Leenheer J.A., Kennedy K.R., Cox L.G., Koci D.R. Biogeochemical processes that produce dissolved organic matter from wheat sraw. U.S. Dept. of the Interior, U.S. Geological Survey, 2003. 17 p.
  36. Wickland K., Neff J., Aiken G. Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability // Ecosystems. 2007. V. 10. P. 1323–1340. https://doi.org/10.1007/s10021-007-9101-4
  37. Yano Y., Lajtha K., Sollins Ph., Caldwell B. Chemistry and dynamics of dissolved organic matter in a temperate coniferous forest on andic soils: effects of litter quality // Ecosystems. 2005. V. 8. P. 286–300. https://doi.org/10.1007/s10021-005-0022-9
  38. Zak D., Reuter H., Augustin J., Shatwell T., Barth M., Gelbrecht J., McInnes R. J. Changes of the СO2 and CH4 production potential of rewetted fens in the perspective of temporal vegetation shifts // Biogeosciences. 2015. V. 12. P. 2455–2468. https://doi.org/10.5194/bg-12-2455-2015
  39. Zukswert J., Prescott C. Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species // Oecologia. 2017. V. 185. P. 305–316. https://doi.org/10.1007/s00442-017-3951-z

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences