Physically based thermodynamic model of soil water retention curve for the entire moisture range
- Authors: Smagin A.V.1,2
-
Affiliations:
- Lomonosov Moscow State University
- Institute of Forest Science, Russian Academy of Sciences
- Issue: No 9 (2024)
- Pages: 1191–1206
- Section: SOIL PHYSICS
- URL: https://edgccjournal.org/0032-180X/article/view/683589
- DOI: https://doi.org/10.31857/S0032180X24090034
- EDN: https://elibrary.ru/WMBPSW
- ID: 683589
Cite item
Abstract
Quantitative description of the water retention curve (WRC) of soils remains one of the most pressing problems in soil hydrophysics due to the importance of WRC for computer modeling of the transport of soil moisture and dissolved substances and for the development of the thermodynamic concept of physical soil quality. The article presents a new model of WRC as a functional dependence of the thermodynamic potential (pressure) of soil water and its content in the entire possible range from conditionally zero to total water capacity in a state of water saturation. Unlike well-known empirical analogues, the model is based on fundamental physical mechanisms of water retention, combining the capillary effect and the Deryagin disjoining water pressure. Limitations by porosity (total water capacity), the maximum height of capillary rise and the standard thermodynamic potential of conditionally zero water content at a temperature of 105°C are used to justify the domain of determination of the WRC, its inflection point and for its scaling. The analytical expression of the new model in the form of a combination of exponential and hyperbolic functions with the argument of soil water content is easily differentiated and makes it possible to calculate the differential water capacity, variable interfacial surface and pore size distribution with a maximum at the inflect point of the field capacity, as well as estimate the specific surface area of the solid phase. Validation of the model using average statistical WRCs of the main genetic types and textural classes of Eurasian soils confirms its good agreement with experimental data with a more adequate description of WRC in the vicinity of conditionally zero soil water content compared to the standard empirical van Genuchten model with the same number of parameters. The fundamental basis of the new model and its good approximation ability for the entire range of WRC create the prospect of its diverse use for assessing the physical quality of soil and for process modeling of water transport, especially in finely dispersed and highly drained arid soils, where the approximation capabilities of the model exceed the known empirical analogues.
About the authors
A. V. Smagin
Lomonosov Moscow State University; Institute of Forest Science, Russian Academy of Sciences
Author for correspondence.
Email: smagin@list.ru
ORCID iD: 0000-0002-3483-3372
Russian Federation, Moscow, 119991; Uspenskoe, 143030
References
- Березин П.Н., Воронин А.Д., Шеин Е.В. Структура почвы: энергетический подход к количественной оценке. // Почвоведение. 1983. № 10. С. 63–69.
- Глобус А.М. Почвенно-гидрофизическое обеспечение агроэкологических математических моделей. Л.: Гидрометеоиздат, 1987. 428 с.
- Дерягин Б.В., Чураев Н.В., Муллер В.М. Поверхностные силы. М.: Наука, 1985. 398 с.
- Роде А.А. Основы учения о почвенной влаге. Избр. тр. М.: Почв. ин-т им. В.В. Докучаева, 2008. Т. 3. 664 с.
- Судницын И.И. Движение почвенной влаги и водопотребление растений. М.: Изд-во Моск. ун-та. 1979. 253 с.
- Финн Р. Равновесные капиллярные поверхности. Математическая теория. М.: Мир, 1989. 312 с.
- Campbell G.S., Shiozawa S. Prediction of hydraulic properties of soils using particle-size distribution and bulk density data // Proceedings of the international workshop on indirect methods for estimating the hydraulic properties of unsaturated soils / Eds. van Genuchten M.Th., et al. Riverside: University of California, 1994. P. 317–328.
- Chi Ch. Two models to describe the entire soil water retention curve // Eur. Soil Sci. 2023. V. 56. P. 447–452. https://doi.org/10.1134/S1064229322602360
- de Jong van Lier Q. Física do solo – baseada em processos. Piracicaba: Edição do autor, 2020. 413 p.
- Dexter A.R. Soil physical quality: part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth // Geoderma. 2004. V. 120. P. 201–214.
- Du Ch. Comparison of the performance of 22 models describing soil water retention curves from saturation to oven dryness // Vadose Zone J. 2020. V. 19. P. e20072. https://doi.org/10.1002/vzj2.20072
- Dullien F.A.L. Porous media: fluid transport and pore structure. San Diego: Academic Press Inc., 1992. 574 p.
- Gregg S.J., Sing, K.S.W. Adsorption, surface area and porosity. San Diego: Academic Press Inc., 1982. 303 p.
- Groenevelt P.H., Grant C.D. A new model for the soil water retention curve that solves the problem of residual water contents // Eur. J. Soil Sci. 2004. V. 55. P. 479–485.
- Keen B.A. The physical properties of the soil. Longmans, Green and Co, 1931.
- Khramchenkov M.G., Khramchenkov E.M., Usmanov R.M. Non-linear equations of mechanics of swelling and metamorphic processes // Lobachevskii J. Math. 2019. V. 40(12). P. 2077–2083. https://doi.org/10.1134/S1995080219120072
- Kosugi K. Three-parameter lognormal distribution model for soil water retention. // Water Resour. Res. 1994. V. 30. P. 891–901.
- Li Y., Zhang Ch., Chen Ch., Chen H. Calculation of capillary rise height of soils by SWCC model. // Geomat. in Geotech. Eng. 2018. V. 2018. P. 5190354, https://doi.org/10.1155/2018/5190354
- Lu S., Ren T., Lu Y., Meng P., Sun S. Extrapolative capability of two models that estimating soil water retention curve between saturation and oven dryness // PLoS ONE. 2014. V. 9(12). P. e113518. https://doi.org/10.1371/journal.pone.0113518
- Omuto C.T. Biexponential model for water retention characteristics. // Geoderma. 2009. V. 149. P. 235–242. http://dx.doi.org/10.1016/j.geoderma.2008.12.001
- Pachepsky Ya.A., Timlin D., and Varallyay G. Artificial neural networks to estimate soil water retention from easily measurable data // Soil Sci. Soc. Am. J. 1996. V. 60. P. 727–733.
- Peters A. Simple consistent models for water retention and hydraulic conductivity in the complete moisture range // Water Resour. Res. 2013. V. 49. P. 6765–6780. https://doi.org/10.1002/wrcr.20548
- Resurreccion A.C., Moldrup P., Tuller M., Ferre T.P.A., Kawamoto K., Komatsu T., de Jonge W.L. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents // Water Resour. Res. 2011. V. 47. P. W06522. https://doi.org/10.1029/2010WR010229
- Richards L.A., Weaver L.R. Moisture retention by some irrigated soils as related to soil-moisture retention // J. Agr. Researh. 1944. V. 69. P. 215235.
- Rudiyanto Sakai M., van Genuchten M.Th., Alazba A.A., Setiawan B.I., Minasny B. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis // Water Resour. Res. 2015. V. 51. P. 17703. https://doi.org/10.1002/2015WR017703
- Rudiyanto, Minasny B., Shah R.S., Setiawan B.I., van Genuchten M.Th. Simple functions for describing soil water retention and the unsaturated hydraulic conductivity from saturation to complete dryness // J. Hydrol. 2020. V. 588. P. 125041. https://doi.org/10.1016/j.jhydrol.2020.125041
- Schneider M., Goss K.U. Prediction of water retention curves for dry soils from an established pedotransfer function: Evaluation of the Webb model // Water Resour. Res. 2012. V. 48. P. W06603. https://doi.org/10.1029/2011WR011049
- Shein E.V., Arkhangel’skaya T.A. Pedotransfer functions: state of the art, problems, and outlooks // Eur. Soil Sci. 2006. V. 39. № 10. P. 1089–1099.
- Simunek J., van Genuchten M.Th., Sejna M. The HYDRUS software package for simulating two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical Manual. Version 1.0. PC Progress. Prague. 2006.
- Smagin A.V. Physically Based Mathematical Models of the Water Vapor Sorption by Soils // Eur. Soil Sci. 2011. V. 44. P. 659–669. https://doi.org/10.1134/S1064229318070098
- Smagin A.V. Theory and methods of evaluating the physical status of soils // Eur. Soil Sci. 2003. V. 36. P. 301312.
- Smagin A.V. Thermodynamic concept of the physical quality of soils // Eur. Soil Sci. 2021. V. 54(9). P. 1312–1327. https://doi.org/10.1134/S106422932109009X
- Smagin A.V. Thermodynamic concept of water retention and physical quality of the soil // Agronomy. 2021. V. 11. P. 1686. P. 91686. https://doi.org/10.3390/agronomy11091686
- Smagin A.V. Thermogravimetric determination of specific surface area for soil colloids. // Colloid J. 2016. V. 78. P. 391396. doi: 10.1134/S1061933X16030170
- Sudnitsyn I.I., Smagin A.V., Shvarov A.P. The theory of Maxwell-Boltzmann-Helmholtz-Gouy about the double electric layer in disperse systems and its application to soil science (on the 100th anniversary of the paper published by Gouy) // Eur. Soil Sci. 2012. V. 45. P. 452–457. https://doi.org/10.1134/S106422931204014X
- Terleev V.V., Ginevsky R.S., Lazarev V.A., Topaj A.G., Dunaieva E.A. Functional description of water-retention capacity and relative hydraulic conductivity of the soil taking into account hysteresis // Eur. Soil Sci. 2021. V. 54. P. 715–724. https://doi.org/10.1134/S106422931204014X
- Too V.K., Omuto C.T., Biamah E.K.Б Obiero J.P. Review of soil water retention characteristic (SWRC) models between saturation and oven dryness // Open J. Modern Hydrology. 2014. V. 4. P. 173–182. http://dx.doi.org/10.4236/ojmh.2014.44017
- van Genuchten M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils // Soil Sci. Soc. Am. J. 1980. V. 44. P. 892898.
- Voronin A.D. Energy Concept of the Physical State of Soils // Eur. Soil Sci. 1990. V. 23. P. 7–19.
- Webb S.W.D. A simple extension of two-phase characteristic curves to include the dry region. // Water Resour. Res. 2000. V. 36(6). P. 1425–1430, https://doi.org/10.1029/2000WR900057
- Xu C.Y., Zhou T.T., Wang C.L., Liu H.Y., Zhang C.T., Hu F.N., Zhao S.W., Geng Z.C. Aggregation of polydisperse soil colloidal particles: Dependence of Hamaker constant on particle size. // Geoderma. 2019. V. 21. P. 113999. https://doi.org/10.1016/j.geoderma.2019.113999
Supplementary files
