Transformation of nonstationary Navier–Stokes equations of a viscous compressible fluid under an arbitrary conformal mapping
- 作者: Dynnikova G.Y.1
 - 
							隶属关系: 
							
- Lomonosov Moscow State University
 
 - 期: 卷 89, 编号 1 (2025)
 - 页面: 17-25
 - 栏目: Articles
 - URL: https://edgccjournal.org/0032-8235/article/view/688456
 - DOI: https://doi.org/10.31857/S0032823525010023
 - EDN: https://elibrary.ru/BOLSMJ
 - ID: 688456
 
如何引用文章
详细
It is shown that, the circulation of velocity and fluid flow on any closed or open contour are preserved under an arbitrary conformal mapping of the two-dimensional viscous compressible flow region. The transformed unsteady Navier–Stokes, continuity and heat balance equations, which govern the aerodynamic parameters in the mapped region, are derived.
全文:
作者简介
G. Dynnikova
Lomonosov Moscow State University
							编辑信件的主要联系方式.
							Email: dyn@imec.msu.ru
				                					                																			                								
Research Institute of Mechanics
俄罗斯联邦, Moscow参考
- Lavrentyev M.A., Shabat B.V. Methods of the Theory of Functions of Complex Variable. Moscow: Nauka, 1965. (in Russian)
 - Rabinovich B.I., Tyurin Y.V. Numerical Conformal Mapping in Two-dimensional Hydrodynamics & Related Problems of Electrodynamics and Elasticity Theory. Moscow: Space Res. Inst. of the RAS, 2000. 312 p.
 - Titova A.A. A Problem of an ideal fluid flow with a singular sink at a depression on the bottom // J. Appl. Ind. Math., 2021, vol. 15, pp. 513–530.
 - Shamin R.V. Dynamics of an ideal fluid with a free surface in conformal variables // Modern Math. Fundam. Directions, 2008, vol. 28. pp. 3–144. (in Russian)
 - Dyachenko A.I. On the dynamics of an ideal fluid with a free surface // Dokl. Math., 2001, vol. 63, no. 1, pp. 115–117.
 - Mizumoto H. A note on the numerical treatment of Navier–Stokes equations. I // J. of the Phys. Soc. of Japan, 1973, vol. 34, no. 5, pp. 1452–1456.
 - Dynnikova G.Y., Guvernyuk S.V., Demchenko Y.V. et al. An efficient algorithm for calculating boundary elements in vortex methods // Engng. Anal. with Boundary Elements, 2023, vol. 151, pp. 394–399.
 - Dynnikova G.Y. Calculation of flow around a circular cylinder on the basis of two-dimensional Navier–Stokes equations at large Reynolds numbers with high resolution in a boundary layer // Dokl. Phys., 2008, vol. 53, no. 10, pp. 544–547.
 - Dynnikova G. Simulation of two-dimensional flow around an elliptical cylinder at high Reynolds numbers // Phys. of Fluids, 2024, vol. 36, no. 023109, pp. 1–6.
 - Loitsyanskii L.G. Mechanics of Liquids and Gases. Oxford: Pergamon, 1966.
 
补充文件
				
			
						
						
						
						
					


