Investigation of efficiency of DoA algorithm on the base of experimental data and numerical simulations in automotive distributed system of incoherent radars
- Authors: Artyukhin I.V.1, Flaksman A.G.1, Rubtsov A.E.1
-
Affiliations:
- Nizhny Novgorod State University n. a. N.I. Lobachevsky
- Issue: Vol 69, No 4 (2024)
- Pages: 357-363
- Section: ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ
- URL: https://edgccjournal.org/0033-8494/article/view/650690
- DOI: https://doi.org/10.31857/S0033849424040079
- EDN: https://elibrary.ru/JROBUF
- ID: 650690
Cite item
Abstract
Investigation of efficiency of proposed DoA estimation algorithm for system of distributed incoherent automotive radars is performed on the base of experimental data and numerical simulation. It is shown that the proposed algorithm correctly recognizes the position of targets in considered experimental scenarios. Comparative numerical simulations show the efficiency of the proposed algorithm compared to the characteristics of single radar.
About the authors
I. V. Artyukhin
Nizhny Novgorod State University n. a. N.I. Lobachevsky
Author for correspondence.
Email: artjukhin@rf.unn.ru
Russian Federation, Gagarina ave., 23, Nizhny Novgorod, 603950
A. G. Flaksman
Nizhny Novgorod State University n. a. N.I. Lobachevsky
Email: artjukhin@rf.unn.ru
Russian Federation, Gagarina ave., 23, Nizhny Novgorod, 603950
A. E. Rubtsov
Nizhny Novgorod State University n. a. N.I. Lobachevsky
Email: artjukhin@rf.unn.ru
Russian Federation, Gagarina ave., 23, Nizhny Novgorod, 603950
References
- Gottinger M., Hoffmann M., Christmann M. et. al. // IEEE J. Microwaves. 2021. V. 1. № 1. P. 149. https://doi.org/10.1109/JMW.2020.3034475
- Waldschmidt C., Hasch J., Menzel W. // IEEE J. Microwaves. 2021. V. 1. P. 135. https://doi.org/10.1109/JMW.2020.3033616
- Черняк В.С. Многопозиционная радиолокация. М.: Радио и связь, 1993.
- Patole S., Torlak M., Wang D., Ali M. // IEEE Signal Process. Mag. 2017. V. 34. № 2. P. 22. https://doi.org/10.1109/MSP.2016.2628914
- Ziegler J., Bender Ph., Schreiber M. et al. // IEEE Intell. Transp. Syst. Mag. 2014. V. 6. № 2. P. 8. https://doi.org/10.1109/MITS.2014.2 306552
- Deng H. // IEEE Aerosp. Electron. Syst. Mag. 2012. V. 27. № 5. P. 28. https://doi.org/10.1109/MAES.2012.6226692
- Bialer O., Jonas A., Tirer T. // IEEE Sensors J. 2021. V. 21. № 16. P. 17846. https://doi.org/10.1109/JSEN.2021.3085677
- Folster F., Rohling H., Lubbert U. // IEEE Int. Radar Conf. 2005. P. 871. https://doi.org/10.1109/RADAR.2005.1435950
- Bialer O., Kolpinizki S. // IEEE Int. Conf. on Acoustics, Speech and Signal Processing. 2019. P. 4175. https://doi.org/10.1109/ICASSP.2019.8682458
- Артюхин И.В., Аверин И.М., Флаксман А.Г., Рубцов А.Е. // Журн. радиоэлектроники. 2023. № 4. https://doi.org/10.30898/16841719.2023.4.2
- Артюхин И.В., Аверин И.М., Флаксман А.Г., Рубцов А.Е. // IX Int. Conf. “Engineering & Telecommunication En&T-2022”. М.: МФТИ. 2022. С. 5.
- Widrow B., Stearn S.D. Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs, 1985.
- Tuncer T.E., Friedlander B. Classical and Modern Direction-of-Arrival Estimation. Burlington; MA: Acad. Press, Inc. 2009.
- Li J., Stoica P. MIMO Radar Signal Processing. Hoboken; N.J.: Wiley-IEEE Press, 2009.
- Patole S., Torlak M., Wang D., Ali M. // IEEE Signal Processing Magazine. 2017. V. 34. № 2. P. 22. https://doi.org/10.1109/MSP.2016.2628914
Supplementary files
