A family of flat-top windows with low spectrum sidelobes for harmonic analysis of signals
- Authors: Zaytsev G.V.1, Khzmalyan A.D.1
-
Affiliations:
- «Almaz» Research and Production Corporation
- Issue: Vol 69, No 9 (2024)
- Pages: 866-877
- Section: ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ
- URL: https://edgccjournal.org/0033-8494/article/view/683528
- DOI: https://doi.org/10.31857/S0033849424090068
- EDN: https://elibrary.ru/HRMQRB
- ID: 683528
Cite item
Abstract
Flat-top windows intended to reduce spectrum amplitude measurement error in discrete harmonic analysis are considered. A new family of flat-top windows, which provide the minimum level of the highest spectrum sidelobe and low calculation complexity is proposed. Mathematical representation of the new windows and a method of optimization of their parameters, which rely on authors’ earlier works are described. A number of flat-top windows of orders 1…6 and sidelobe falloff rates of 6, 12, 18, 24, 30, 36, and 48 decibels per octave are synthesized, tables of their parameters are provided, and their characteristics are analyzed. An alternative technique to reduce the spectrum amplitude measurement error is proposed.
Full Text

About the authors
G. V. Zaytsev
«Almaz» Research and Production Corporation
Author for correspondence.
Email: gennady-zaytsev@yandex.ru
Russian Federation, Leningradskii prosp., 80, Build. 16, Moscow, 125190
A. D. Khzmalyan
«Almaz» Research and Production Corporation
Email: gennady-zaytsev@yandex.ru
Russian Federation, Leningradskii prosp., 80, Build. 16, Moscow, 125190
References
- Хэррис Ф.Дж. // ТИИЭР. 1978. Т. 66. № 1. С. 60.
- Prabhu K.M.M. Window Functions and Their Applications in Signal Processing. Boca Raton: CRC Press, 2014.
- Оппенгейм А.В., Шафер Р.В. Цифровая обработка сигналов. М.: Техносфера, 2006.
- D’Antona G., Ferrero A. Digital Signal Processing for Measurement Systems. N.Y.: Springer Media, 2006.
- Salvatore, L., Trotta A. // IEE Proc. 1988. V. 135. № 6. P. 346.
- Heinzel G., Rudiger A., Schilling R. Spectrum and Spectral Density Estimation by the Discrete Fourier transform (DFT), Including a Comprehensive List of Window Functions and Some New at-top Windows. Hannover: Max-Planck-Institut fur Gravitationsphysik, Teilinstitut. 2002, 84 p.
- Cortés C.A., Mombello E., Dib R., Ratta G. // Signal Processing. 2007. V. 87. P. 2151.
- Зайцев Г.В. // Радиотехника. 2011. № 3. С. 21.
- Коллатц Л., Крабс В. Теория приближений. Чебышевские приближения и их приложения. М.: Наука, 1978.
- Зайцев Г.В. // Радиотехника. 2012. № 1. С. 55.
- Хзмалян А.Д. // Вестник воздушно-космической обороны. 2018. № 4. С. 90.
- Zaytsev G.V., Khzmalyan A.D. // Proc. Int. Conf. on Eng. and Telecom. (EnT). Dolgoprudny. 20–21 Nov. 2019. N.Y.: IEEE, 2019. https://doi.org/10.1109/EnT47717.2019.9030552
- Зайцев Г.В., Хзмалян А.Д. // РЭ. 2021. Т. 66. № 5. С. 443. https://doi.org/10.31857/S0033849421050120
- Зайцев Г.В., Хзмалян А.Д. Оптимальные весовые функции для гармонического анализа сигналов в реальном времени. М.: НПО «Алмаз», 2023. https://elibrary.ru/item.asp?id=54363389
Supplementary files
