Metamagnetic phase transition in Mn5Si3 compound

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The electrical resistance of the Mn5Si3 compound in magnetic fields up to 2 T at cryogenic temperatures in the range from 35 K to 90 K was studied. The characteristic temperatures of the magnetic phase transition TN1 and TN2 were determined based on the results of measuring the heat capacity at constant pressure CP, magnetization M and specific electrical resistance ρ. It was shown that the behavior of the ρ(T) curves differs depending on the measurement conditions and protocol. Based on the results of measuring the magnetocaloric properties in strong magnetic fields up to 10 T at cryogenic temperatures in the range from 25 to 125 K, both the inverse and conventional magnetocaloric effects were observed. The maximum value of the inverse magnetocaloric effect was ∆Tad = –1.1 K at an initial temperature T0 = 50 K in a magnetic field of 10 T. Conventional magnetocaloric effect with a maximum value of ∆Tad = +0.9 K is observed at T0 = 62.5 K in a field of 10 T. A local exponent of field distribution of entropy n is determined, the value of which n > 2 confirms the type and existence of a first-order phase transition.

About the authors

А. S. Kuznetsov

Kotelnikov Institute of Radio Engineering and Electronics of the RAS

Author for correspondence.
Email: kuznetsovalserg@gmail.com
Russian Federation, Mokhovaya St., 11, build. 7, Moscow, 125009

А. V. Mashirov

Kotelnikov Institute of Radio Engineering and Electronics of the RAS

Email: kuznetsovalserg@gmail.com
Russian Federation, Mokhovaya St., 11, build. 7, Moscow, 125009

I. I. Musabirov

Institute for Metals Superplasticity Problems of the RAS

Email: kuznetsovalserg@gmail.com
Russian Federation, Stepan Khalturin st., 39, Ufa, 450001

V. I. Mitsiuk

Scientific and Practical Center of the NAS of Belarus for Materials Science

Email: kuznetsovalserg@gmail.com
Belarus, Petrusya Brovka St., 19, build. 5, Minsk, 220072

А. V. Koshelev

Institute of Experimental Mineralogy of the RAS

Email: kuznetsovalserg@gmail.com
Russian Federation, Academician Osipyana St., 4, Chernogolovka, Moscow Region, 142432

К. А. Kolesov

Kotelnikov Institute of Radio Engineering and Electronics of the RAS

Email: kuznetsovalserg@gmail.com
Russian Federation, Mokhovaya St., 11, build. 7, Moscow, 125009

R. Yu. Gaifullin

Institute of Experimental Mineralogy of the RAS

Email: kuznetsovalserg@gmail.com
Russian Federation, Academician Osipyana St., 4, Chernogolovka, Moscow Region, 142432

V. V. Koledov

Kotelnikov Institute of Radio Engineering and Electronics of the RAS

Email: kuznetsovalserg@gmail.com
Russian Federation, Mokhovaya St., 11, build. 7, Moscow, 125009

V. G. Shavrov

Kotelnikov Institute of Radio Engineering and Electronics of the RAS

Email: kuznetsovalserg@gmail.com
Russian Federation, Mokhovaya St., 11, build. 7, Moscow, 125009

References

  1. Tishin A.M., Pecharsky V.K., Gschneidner K.A. // Phys. Rev. B. 1999. V. 59. № 1. P. 503. https://doi.org/10.1103/PhysRevB.59.503
  2. Balli M., Jandl S., Fournier P. et al. // Appl. Phys. Rev. 2017. V. 4. № 2. P. 021305. https://doi.org/10.1063/1.4983612
  3. Franco V., Blázquez J.S., Conde A. // Appl. Phys. Lett. 2006. V. 89. № 22. P. 222512. https://doi.org/10.1063/1.2399361
  4. von Ranke P.J., de Oliveira N.A., Alho B.P. et al. // J. Phys.: Cond. Matt. 2009. V. 21. № 5. P. 056004. https://doi.org/10.1088/0953-8984/21/5/056004
  5. MacDonald A.H., Tsoi M. // Phil. Trans. R. Soc. A. 2011. V. 369. № 1948. P. 3098. https://doi.org/10.1098/rsta.2011.0014
  6. Tishin A.M., Spichkin Y.I. The Magnetocaloric Effect and its Applications. Bristol: Inst. of Physics Publishing, 2003. https://doi.org/10.1201/9781420033373
  7. Numazawaa T., Kamiya K., Utaki T., Matsumoto K. // Progress in Superconductivity and Cryogenics. 2013. V. 15. № 2. P. 1. https://doi.org/10.9714/psac.2013.15.2.001
  8. Doerr M., Bœuf J., Pfleiderer C. et. al. // Physica B. 2004.V. 346–347. P. 137.
  9. Kübler J., Felser C. // EuroPhys. Lett 2014. V. 108. № 6. P. 67001. https://doi.org./10.1209/0295-5075/108/67001
  10. Caron L., Miao X.F., P Klaasse J.C. et al. // Appl. Phys. Lett. 2013. V. 103. № 11. P. 112404. https://doi.org/10.1063/1.4821197
  11. Tekgul A., Cakır O., Acet M. et al. // J. Appl. Phys. 2015. V. 118. № 15. P. 153903. https://doi.org/10.1063/1.4934253
  12. Lander G.H., Brown P.J., Forsyth J.B. // Proc. Phys. Soc. 1967. V. 91. № 2. P. 332. https://doi.org/10.1088/0370-1328/91/2/310
  13. Menshikov A.Z., Vokhmyanin A.P., Dorofeev Yu.A. // Phys. Stat. Solid. B. 1990. V. 158. № 1. P. 319.https://doi.org/10.1002/pssb.2221580132
  14. Cудакова Н.П., Кузнецов С.И., Михельсон А.В. и др. // Докл. АН СССР. 1976. Т. 228. № 3. С. 582. http://mi.mathnet.ru/rus/dan/v228/i3/p582
  15. Luccas R.F., Sánchez-Santolino G., Correa-Orellana A. et. al. // J. Magn. Magn. Mater. 2019. V. 489. P. 165451. https://doi.org/10.1016/j.jmmm.2019.165451
  16. Songlin Dagula, Tegus O. et al. // J. Alloys and Compounds. 2002. V. 334. P. 242. https://doi.org/10.1016/S0925-8388(01)01776-5
  17. Gottschilch M., Gourdon O., Persson J. et al. // J. Material Chemistry. 2012. V. 22. № 30. P. 15275. https://doi.org/10.1039/C2JM00154C
  18. Brown P.J., Forsyth J.B., Nunez V., Tasset F. // J. Phys.: Cond. Matt. 1992. V. 4. № 49. P. 10025. https://doi.org/10.1088/0953-8984/4/49/029
  19. Brown P.J., Forsyth J.B. // J. Phys.: Cond. Matt. 1995. V. 7. № 39. P. 7619. https://doi.org/10.1088/0953-8984/7/39/004
  20. Silva M.R., Brown P.J., Forsyth J.B. // J. Phys.: Cond. Matt. 2002. V. 14. № 37. P. 8707. https://doi.org/10.1088/0953-8984/14/37/307
  21. Кузнецов А.С., Маширов А.В., Мусабиров И.И. и др. // РЭ. 2023. Т. 68. № 4. С. 353. https://10.31857/S0033849423040083
  22. Koshkid’ko Yu.S., Ćwik J., Ivanova T.I. et al. // J. Magn. Magn. Mater. 2017. V. 433. P. 234. https://doi.org/10.1016/j.jmmm.2017.03.027
  23. Кузнецов А.С., Маширов А.В., Алиев А.М. и др. // ФММ. 2022. Т. 123. № 4. С. 425. https://doi.org/10.1134/S0031918X2204007X
  24. Leciejewicz J., Penc B., Szytula A. et al. // Acta Physica Polonica A. 2008. V. 113. № 4. P. 1193. https://doi.org/10.12693/APhysPolA.113.1193
  25. de Almeida D.M., Bormio-Nunes C., Nunes C.A. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 2578. https://doi.org/10.1016/j.jmmm.2009.03.067
  26. Al-Kanani H.J., Booth J.G. // J. Magn. Magn. Mater. 1995. V. 140. P. 1539. https://doi.org/10.1016/0304-8853(94)01157-5
  27. Das S.C., Mandal K., Dutta P. et al. // Phys. Rev. B. 2019. V. 100. № 2. P. 024409. https://doi.org/10.1103/PhysRevB.100.024409
  28. Sürgers C., Kittler W., Wolf T., v. Löhneysen H. // AIP Advances. 2016. V. 6. № 5. P. 055604. https://doi.org/10.1063/1.4943759
  29. Meaden G.T. // Contemporary Physics, 1971. V. 12. № 4. P. 313. https://doi.org/10.1080/00107517108205267
  30. Wilding M.D., Lee E.W. // Proc. Phys. Soc. 1965. V. 85. № 5. P. 955. https://doi.org/10.1088/0370-1328/85/5/313
  31. Hall P.M., Legvold S., Spedding F.H. // Phys. Rev. 1960. V. 117. № 4. P. 971. https://doi.org/10.1103/PhysRev.117.971
  32. Ellerby M., McEwen K.A., Jensen J. // Phys. Rev. B. 1998. V. 57. № 14. P. 8416. https://doi.org/10.1103/PhysRevB.57.8416
  33. Das S.C., Pramanick S., Chatterjee S. // J. Magn. Magn. Mater. 2021. V. 529. P. 167909. https://doi.org/10.1016/j.jmmm.2021.167909
  34. Adhikari S.K., Roy R., Das S.C. et al. // J. Alloys and Compound. 2023. V. 967. Article No. 171752. https://doi.org/10.1016/j.jallcom.2023.171752
  35. Das S.C., Chatterjee S. // J. Magn. Magn. 2022. V. 892. P. 162212. Mater. https://doi.org/10.1016/j.jallcom.2021.162212
  36. Adhikari S.K., Roy R., Das S. C. et al. // J. Magn. Magn. 2024. V. 589. P. 171591. https://doi.org/10.1016/j.jmmm.2023.171591
  37. Zheng X.Q., Xu Z.Y., Zhang B. et al. // J. Magn. Magn. Mater. 2017. V. 421. P. 448. https://doi.org/10.1016/j.jmmm.2016.08.048
  38. Rajivgandhi R., Arout Chelvane J., Nigam A.K. et al. // J. Alloys and Compounds. 2020. V. 815. Article No. 152659. https://doi.org/10.1016/j.jallcom.2019.152659
  39. Kamantsev A.P., Koshkid’ko Yu.S, Taskaev S.V. et al. // J. Superconductivity and Novel Magnetism. 2022. V. 35. № 8. P. 2181. https://doi.org/10.1007/s10948-022-06336-z
  40. Панкратов Н.Ю., Терешина И.С., Никитин С.А. // ФММ. 2023. Т. 124. С. V. 124. № 11. P. 1093. https://doi.org/10.1134/S0031918X23601841
  41. Gu Y., Wang X., Li S. et al. // J. Alloys and Compounds. 2023. V. 960. Article No. 170918. https://doi.org/10.1016/j.jallcom.2023.170918
  42. Aндреенко А.С., Белов К.П., Никитин С.А., Тишин А.М. // Успехи физ. наук. 1989. Т. 158. № 4. С. 553. https://doi.org/10.1070/PU1989v032n08ABEH002745
  43. Алиев А.М., Батдалов А.Б., Ханов Л.Н. и др. // ФТТ. 2020. Т. 62. № 5. С. 748 https://doi.org/10.1134/S1063783420050030
  44. Ханов Л.Н. Батдалов А.Б., Маширов А. и др. // ФТТ. 2018. Т. 60. № 6. С. 1099. https://doi.org/10.21883/FTT.2018.06.45982.09M
  45. Pramanick S., Chatterjee S. et al. // J. Alloys and Compounds. 2013. V. 578. P. 157. https://doi.org/10.1016/j.jallcom.2013.04.074
  46. Fayzullin R., Buchelnikov V., Mashirov A., Zhukov M. // Physics Procedia. 2015. V. 75. P. 1259. https://doi.org/10.1016/j.phpro.2015.12.139
  47. Kuznetsov D.D., Kuznetsova E.I., Mashirov A.V. et al. // Nanomaterials. 2023. V. 13. № 8. Article No. 1385. https://doi.org/10.3390/nano13081385
  48. Biniskos N., Schmalzl K., Raymond S. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. P. 257205. https://doi.org/10.1103/PhysRevLett.120.257205
  49. Sürgers C., Wolf T., Adelmann P. et al. // Sci. Rep. 2017. V. 7. Article No. 42982. https://doi.org/10.1038/srep42982
  50. Pecharsky V.K., Gschneidner K.A. // J. Appl. Phys. 1999. V. 86. № 1. P. 565. https://doi.org/10.1063/1.370767
  51. Tegus O., Bruck E., Zhang L. et al. // Physica B: Cond. Matt. 2002. V. 319. № 1–4. P. 174. https://doi.org/10.1016/S0921-4526(02)01119-5
  52. Shen T.D., Schwarz R.B., Coulter J.Y., Thompson J.D. // J. Appl. Phys. 2002. V. 91. № 8. P. 5240. https://doi.org/10.1063/1.1456957
  53. Law J.Y., Franco V., Moreno-Ramírez L.M. et al. // Nature Commun. 2018. V. 9. Article No. 2680. https://doi.org/10.1038/s41467-018-05111-w

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences