Creation of 2D-imaging system based on radio light using correlation-based reception

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of creating a system for constructing two-dimensional images in radio light based on correlation reception is considered, where radio light is understood as ultra-wideband noise-like microwave radiation. A mathematical model was developed, with the help of which images of radio light lamps were obtained, also the modeling results were used to create a real layout of the receiving system. Experiments were carried out with a prototype system for constructing two-dimensional images in radio light using correlation-based reception, with the help of which images of two radio light sources with a difference in radiation level of 12 dB were obtained.

Texto integral

Acesso é fechado

Sobre autores

M. Petrosyan

Kotelnikov Institute of Radio Engineering and Electronics of RAS

Email: mef.box@gmail.com
Rússia, Mokhovaya Str., 11, build. 7, Moscow, 125009

A. Ryzhov

Kotelnikov Institute of Radio Engineering and Electronics of RAS

Autor responsável pela correspondência
Email: mef.box@gmail.com
Rússia, Mokhovaya Str., 11, build. 7, Moscow, 125009

Bibliografia

  1. Zhao M., Liu Y., Raghu A. et al. // 2019 Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV). Seoul. 27 Oct. – 02 Nov. N.Y.: IEEE, 2019. P. 10112. https://doi.org/10.1109/ICCV.2019.01021
  2. Adib F., Hsu C.-Y., Mao H. et al. // ACM Trans. on Graphics. 2015. V. 34. № 6. Article No. 219. https://doi.org/10.1145/2816795.2818072
  3. Pallaprolu A., Korany B., Mostofi Y. // 2023 Proc. IEEE Radar Conf. San Antonio. 01–05 May. N.Y.: IEEE, 2023. Paper No. 10149785 https://doi.org/10.1109/RadarConf2351548.2023.10149785
  4. Korany B., Karanam C.R., Mostofi Y. // Proc. 2018 IEEE10th Sensor Array and Multichannel Signal Processing Workshop (SAM). Sheffield. 08–11 Jul. N.-Y.: IEEE, 2018. P. 134. https://doi.org/10.1109/SAM.2018.8448565
  5. Karanam C.R., Mostofi Y. // Proc. 2017 16th ACM/IEEE Int. Conf. Information Processing in Sensor Networks (IPSN). Pittsburgh. 18–21Apr. N.Y.: IEEE, 2017. P. 131. https://doi.org/10.1145/3055031.3055084
  6. Alidoustaghdam H., Dogu S., Akinci M.N., Cayoren M. // Proc. 2020 Asia-Pacific Microwave Conf. (APMC). Hong Kong. 08–11 Dec. IEEE. 2020. P. 1054. https://doi.org/10.1109/APMC47863.2020.9331597
  7. Cheng Q., Liu Y., Zhang H., Y. Hao // IEEE Antennas and Wireless Propagation Lett. 2020 V. 19. № 5. P. 851.https://doi.org/10.1109/LAWP.2020.2982147
  8. Ивашов C.B., Бугаев А.С. // РЭ. 2013. Т. 58. № 9. С. 935. https://doi.org/10.7868/S0033849413090052
  9. Дмитриев А.С., Ефремова Е.В., Герасимов М.Ю., Ицков В.В. // РЭ. 2016. Т. 61. № 11. С. 1073. https://doi.org/10.7868/S0033849416110024
  10. Гуляев Ю.В., Дмитриев А.С., Ицков В.В. и др. // РЭ. 2018. Т. 63. № 9. С. 947. https://doi.org/10.1134/S0033849418090085
  11. Дмитриев А.С., Ицков В.В., Петросян М.М. и др. // РЭ. 2019. Т. 64. № 9. С. 916. https://doi.org/10.1134/S0033849419080047
  12. Дмитриев А.С., Петросян М.М., Рыжов А.И. // Письма в ЖТФ. 2021. Т. 47. № 12. С. 38.
  13. Петросян М.М., Рыжов А.И. // РЭ. 2023.Т.68. № 9. С. 930. https://doi.org/10.31857/S003384942309022X
  14. Дмитриев А.С., Рыжов А.И., Сьерра-Теран К.М. // Прикладная нелинейная динамика. 2023. Т. 31. № 4. С. 421. https://doi.org/10.18500/0869-6632-003048
  15. Дмитриев А.С., Ефремова Е.В. // Письма в ЖТФ. 2016. Т. 42. № 24. С. 49. https://doi.org/10.21883/pjtf.2016.24.44078.16439
  16. Pоманюк Ю.А. Основы обработки сигналов: Учеб. пособие. М.: МФТИ, 1989.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Location of antennas in the receiving system.

Baixar (103KB)
3. Fig. 2. The arrangement of antennas in the receiving system: A – antenna, L – radio light lamp, τ – propagation time of electromagnetic radiation.

Baixar (80KB)
4. Fig. 3. Spectral power density of a radio light lamp with a band of 2 GHz: (a) – at the carrier frequency; (b) – in analytical form at zero frequency.

Baixar (210KB)
5. Fig. 4. Response of the correlation receiver of radio light using: two antennas (a); three antennas (b); four antennas (c); four antennas for an extended region with angles φ, θ in the range [–90°, 90°] (d).

Baixar (1MB)
6. Fig. 5. Response of the receiving system after applying the Kaiser window function to the presence of two radio light lamps with the signal of the right lamp weakening relative to the left by: (a) 0 dB; (b) 4 dB; (c) 8 dB; (d) 12 dB.

Baixar (1MB)
7. Fig. 6. Schematic diagram of a correlation radio light receiver used to obtain two-dimensional images: LR – radio light lamp, AV – Vivaldi antenna, LNA – low-noise amplifier, PS – passive mixer, RNG – frequency shift generator, OSC – oscilloscope, PC – personal computer.

Baixar (89KB)
8. Fig. 7. External view of a radio light lamp connected to attenuators, which includes a generator and a Vivaldi antenna.

Baixar (114KB)
9. Fig. 8. General view of the experimental setup: RPL – radio-absorbing sheet; LR – radio light lamp; LRA – radio light lamp with attenuator, PE – receiving element.

Baixar (610KB)
10. Fig. 9. Images obtained during the experiment with real radio light lamps with the signal of the right lamp weakened relative to the left by: 0 (a); 6 (b); 12 dB (c); the source lamp is absent (d).

Baixar (934KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025