In vitro screening of potential echinochrome delivery systems for the treatment of eye diseases
- Authors: Alexander-Sinklair E.I.1, Aleksandrova S.A.1, Darvish D.M.1, Edomenko N.V.1, Gorbach V.I.2, Yermak I.M.2, Mikhailova N.A.1, Blinova M.I.1
-
Affiliations:
- Institute of Cytology of the Russian Academy of Sciences
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences
- Issue: Vol 66, No 3 (2024)
- Pages: 274-288
- Section: Articles
- URL: https://edgccjournal.org/0041-3771/article/view/669597
- DOI: https://doi.org/10.31857/S0041377124030085
- EDN: https://elibrary.ru/PEBSAD
- ID: 669597
Cite item
Abstract
An important task of topical application of medicines in the treatment of eyes is to achieve a compromise between their effectiveness and safety. The development of new multifunctional local ophthalmic drug delivery systems and in vitro screening of potential medicinal eye products are key areas in solving this problem. In this study, primary in vitro screening of the effect of echinochrome (Ech), the carrageenan complex of echinochrome (CRG/Ech) and its liposomal form (CRG/Ech-Lip) was performed on cultured epithelial cells of the outer shell of the eyeball: conjunctival epithelial cells (Chang Conjunctiva, Clone 1-5c-4) and corneal epithelium human (HCE). The cell viability was assessed by their morphology and metabolic activity using light microscopy and MTT test methods. The direct dependence of the intensity of the cytotoxic effect of Ech on its concentration in the nutrient medium, the form of use, the cellular test system and the incubation time of cells was revealed. Ech in the form of an alcoholic solution in its final concentration of 0.1 mg/ml of the nutrient medium exhibits pronounced cytoxicity against both cellular test systems. The same final concentration of Ech in the nutrient medium, but already as part of the carrageenan complex of echinochrome (CRG/Ech), turned out to be critical only for the viability of corneal epithelial cells, the survival rate of conjunctival cells under these conditions was about 50 %. A high biocompatibility of the liposomal form of the carrageenan complex of echinochrome (CRG/Ech-Lip) with cells of both test systems and a stimulating cytoprotective effect against the cells of the conjunctiva epithelium was revealed.
About the authors
E. I. Alexander-Sinklair
Institute of Cytology of the Russian Academy of Sciences
Author for correspondence.
Email: elga.aleks@gmail.com
Russian Federation, St. Petersburg, 194064
S. A. Aleksandrova
Institute of Cytology of the Russian Academy of Sciences
Email: elga.aleks@gmail.com
Russian Federation, St. Petersburg, 194064
D. M. Darvish
Institute of Cytology of the Russian Academy of Sciences
Email: elga.aleks@gmail.com
Russian Federation, St. Petersburg, 194064
N. V. Edomenko
Institute of Cytology of the Russian Academy of Sciences
Email: elga.aleks@gmail.com
Russian Federation, St. Petersburg, 194064
V. I. Gorbach
Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences
Email: elga.aleks@gmail.com
Russian Federation, Vladivostok, 690022
I. M. Yermak
Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences
Email: elga.aleks@gmail.com
Russian Federation, Vladivostok, 690022
N. A. Mikhailova
Institute of Cytology of the Russian Academy of Sciences
Email: elga.aleks@gmail.com
Russian Federation, St. Petersburg, 194064
M. I. Blinova
Institute of Cytology of the Russian Academy of Sciences
Email: elga.aleks@gmail.com
Russian Federation, St. Petersburg, 194064
References
- Александрова О. И., Хорольская Ю. И., Майчук Д. Ю., Блинова М. И. 2015. Исследование общей цитотоксичности антибиотиков аминогликозидного и фторхинолонового ряда на клеточных культурах. Вестник офтальмологии. Т. 131. № 5. С. 43. (Alexandrova O. I., Khorolskaya Y. I., Maychuk D. Y., Blinova M. I. 2015. Study of common cytotoxicity of aminoglycoside and fluoroquinolone antibiotics in cell cultures. Vestnik. oftal’mol. V. 131. No. 5. P. 43.) 10.17116/oftalma2015131543-53' target='_blank'>https://doi: 10.17116/oftalma2015131543-53
- Аляутдин Р. Н., Иежица И. Н., Агарвал Р. 2014. Транспорт лекарственных средств через роговицу глаза: перспективы применения липосомных лекарственных форм. Вестник офтальмологии. Т. 130. № 4. С. 117. (Aliautdin R. N., Iezhitsa I. N., Agarval R. 2014. Transcorneal drug delivery: prospects for the use of liposomes. Vestnik Oftalmologii. V. 130. No. 4. P. 117.)
- Барсуков Л. И. Липосомы. Соросовский образовательный журнал. № 10. С. 2. (Barsukov L. I. 1998. Liposomy. (in Russian). Sorosovskii obrazovatel’nyi jurnal. No. 10. P. 2.)
- Егоров Е. А. (ред.). 2004. Рациональная фармакотерапия в офтальмологии: Руководство для практикующих врачей. М.: Литтерра. Т. 7. (Egorov E. A. (Ed.) 2004. Rational pharmacotherapy in ophthalmology: handbook for practicing doctors. Moscow: Litterra. Vol. 7.)
- Бочков П. О., Колыванов Г. Б., Литвин А. А., Жердев В. П., Шевченко Р. В. 2016. Влияние высокомолекулярных вспомогательных веществ на оптимизацию фармакокинетических свойств лекарственных препаратов. Фармакокинетика и фармакодинамика. № 1. С. 3. (Bochkov P., Kolyvanov G., Litvin A., Zherdev V., Shevchenko R. 2016. Effects of the high-molecular excipients on optimization of the pharmacokinetic properties of drugs. Pharmacokinetics and Pharmacodynamics. (In Russian). No. 1. P. 3.)
- Киселев О. И., Еропкина Е. М., Смирнова Т. Д., Еропкин М. Ю., Ильинская Е. В., Сухинин В. П., Прочуханова А. Р., Зарубаев, В. В. 2006. Оценка метаболических показателей in vitro как модельная система тестирования цитотоксичности противовирусных препаратов. Экспериментальная и клиническая фармакология. Т. 69. № 1. С. 65. (Kiselev O. I., Eropkina E. M., Smirnova T. D., Eropkin M. Yu., Ilyinskaya E. V., Sukhinin V. P., Prochukhanova A. R., Zarubaev, V. V. 2006. Assessment of metabolic parameters in vitro as a model system for testing the cytotoxicity of antiviral drugs. Exper. Clinical Pharmacol. (in Russian). V. 69. No. 1. P. 65.) https://doi.org/10.30906/0869-2092-2006-69-1-65-70
- Ковалев Н. Н., Крыжановский С. П., Кузнецова Т. А., Костецкий Э. Я., Беседнова Н. Н. 2016. Морские ежи: биомедицинские аспекты практического применения. Владивосток: Дальнаука. (Kovalev N. N., Kryzhanovsky S. P., Kuznetsova T. A., Kostetsky E. Ya., Besednova N. N. 2016. Sea urchins: biomedical aspects of practical application. Vladivostok: Dalnauka.)
- Кривошапко О. А., Попов А. М. 2011. Лечебные и профилактические свойства липидов и антиоксидантов, выделенных из морских гидробионтов. Вопр. питания. № 2. С. 4. (Krivoshapko O. A., Popov A. M. 2011. Therapeutic and preventive properties of lipids and antioxidants isolated from marine aquatic organisms. Question nutrition. No. 2. P. 4.)
- Лепарская Н. Л., Сорокоумова Г. М.; Сычева Ю. В., Хорошилова-Маслова И.П., Каплун А. П., Кереев И. И., Гундорова Р. А., Нероев В. В., Швец В. И. 2011. Липосомы, содержащие дексаметазон: получение, характеристика и использование в офтальмологии. Вестник МИТХТ им. МВ Ломоносова. Т. 6. № 2. С. 37. (Leparskaya N. L., Sorokoumova G. M., Sycheva Y. V., Khoroshilova-Maslova I.P., Kaplun A. P., Kereev I. I., Gundorova R. A., Neroev V. V., Shvets V. I. 2011. Liposomes containing dexamethasone: obtaining, characterization and use in ophthalmology. Vestnik Lomonosov Institute of Fine Chemical Technologies, V. 7. P. 37.)
- Мельникова Е. В., Горячев Д. В., Чапленко А. А., Водякова М. А., Сайфутдинова А. Р., Меркулов В. А. 2018. Разработка липосомных форм лекарственных препаратов: методы оценки и показатели качества. Вестник Российского государственного медицинского университета. № 6. С. 35. (Melnikova E. V., Goryachev D. V., Chaplenko A. A., Vodyakova M. A., Sayfutdinova A. R., Merkulov V. A. 2018. Development of liposomal drug formulations: quality attributes and methods for quality control. Bulletin of Russian State Medical University. No. 6. P. 33.) https://doi: 10.24075/brsmu.2018.092
- Свистельник А. В., Ханин А. Л. 2014. Липосомные лекарственные препараты: возможности и перспективы. Медицина в Кузбассе. № 2. С. 7. (Svistelnik A. V., Khanin A. L. 2014. Liposomal drugs: opportunities and prospects. Medicine in Kuzbass. No. 2. Р. 7).
- Талалаева О. С., Зверев Я. Ф., Брюханов В. М. 2017. Клеточно-молекулярные механизмы, обеспечивающие терапевтическую эффективность гистохрома. Обзоры по клинической фармакологии и лекарственной терапии. Т. 15. № 4. С. 58. (Talalaeva O. S., Zverev Y. F., Bryukhanov V. M. 2017. The cellular and molecular mechanisms providing therapeutic efficiency of gistokhrom (in Russian). Rev. Clinical Pharmacol. Drug Ther. Vol. 15. Nо. 4. P. 58—68.) https://doi: 10.17816/RCF15458-68
- Тедеева Н. С., Мельников В. Я., Догадова Л. П. 2014. Применение гистохрома в офтальмологии. Тихоокеанский медицинский журнал. Т. 4. № 58. С. 17. (Tedeeva N. S., Melnikov V. Y., Dogadova L. P. 2014. Using of histochrom in ophthalmology. Pacific Medical Journal. V. 4. No. 58. P. 17.)
- Фитилев С. Б., Шкребнева И. И., Возжаев А. В. 2017. Основы рациональной фармакотерапии. Проблемный метод преподавания клинической фармакологии. М: РУДН. (Fitilev S. B., Shkrebneva I. I., Vozzhaev A. V. 2017. Fundamentals of rational pharmacotherapy (in Russian). Moscow: RUDN Med. Institute.)
- Adamczak M. I., Martinsen Ø. G., Smistad G., Hiorth M. 2017. Polymer coated mucoadhesive liposomes intended for the management of xerostomia. Int. J. Pharmaceutics. V. 527. P. 72. 10.1016/j.ijpharm.2017.05.032' target='_blank'>https://doi: 10.1016/j.ijpharm.2017.05.032
- Agarwal R., Iezhitsa I., Agarwal P., Abdul Nasir N. A., Razali N., Alyautdin R., Ismail N. M. 2016. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv. V. 23. No. 4. P. 1075. https://doi: 10.3109/10717544.2014.943336.
- Anderson H. A., Mathieson J. W., Thomson R. H. 1969. Distribution of spinochrome pigments in echinoids. Compar. Biochem. Physiol. V. 28. P. 333. 10.1016/0010-406X(69)91347-4' target='_blank'>https://doi: 10.1016/0010-406X(69)91347-4
- Angius F., Floris A. 2015. Liposomes and MTT cell viability assay: an incompatible affair. Toxicol In Vitro. V. 29. No. 2. P. 314. https://doi: 10.1016/j.tiv.2014.11.009
- Araki-Sasaki K., Ohashi Y., Sasabe T., Hayashi K., Watanabe H., TaNo. Y., Handa H. 1995 An SV40-immortalized human corneal epithelial cell line and its characterization. Invest. Ophthalmol. Vis. Sci. V. 36. No. 3. P. 614.
- Bonneau N, Baudouin C, Réaux-Le Goazigo A, Brignole-Baudouin F. 2022. An overview of current alternative models in the context of ocular surface toxicity. J. Appl. Toxicol. V. 42. No. 5. P. 718.
- Cartwright C. P., Juroszek J.-R., Beavan M. J., Ruby F. M. S., De Morais S. M. F., Rose A. H. 1986. Ethanol dissipates the proton-motive force across the plasma membrane of Saccharomyces cerevisiae. J. Gen. Microbiol. V. 132. I. 2. P. 369.
- Diaz G., Melis M., Musin A., Piludu M., Piras M., Falchi A. M. 2007. Localization of MTT formazan in lipid droplets. An alternative hypothesis about the nature of formazan granules and aggregates. Eur. J. Histochem. V. 51. No. 3. P. 213.
- DuBois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. V. 28. No. 3. P. 350. https://doi.org/10.1021/ac60111a017
- Ebrahim S., Peyman G. A., Lee P. J. 2005. Applications of liposomes in ophthalmology. Surv. Ophthalmol. V. 50. No. 2. P. 167.
- El’kin Yu.N., Cherednichenko A. I., Kol’tsova E.A., Artyukov A. A. 2011. Electron capture mass spectrometry of echinochrome. A. J. Anal. Chem. V. 66. P. 1477. 10.1134/S1061934811140073' target='_blank'>https://doi: 10.1134/S1061934811140073
- Elyakov G., Maximov O., Mischenko N., Koltsova E., Fedoreev S., Glebko L., Krasovskaya N., Artjukov A. 2002. Histochrome and its therapeutic use in ophthalmology. U. S. Patent 6384084.
- Elyakov G., Maximov O., Mischenko N., Koltsova E., Fedoreev S., Glebko L., Krasovskaya N., Artjukov A. 2004. Composition comprising di-and trisodium salts of echinochrome for treating ocular conditions. Eur. Patent EP 1 121 929 B1.
- Elyakov G. B., Maximov O. B., Mischenko N. P., Koltsova E. A., Fedoreev S. A., Glebko L. I., Krasovskaya N., Artjukov A. 2007. Drug preparation “Histochrome” for treating acute myocardial infarction and ischemic heart diseases. Eur. Patent 1121930.
- Fernández-Ferreiro A., González Barcia M., Gil-Martínez M., Vieites-Prado A., Lema I., Argibay B., Blanco Méndez J., Lamas M. J., Otero-Espinar F.J. 2015. In vitro and in vivo ocular safety and eye surface permanence determination by direct and magnetic resonance imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan. Eur. J. Pharm. and Biopharm. V. 94. P. 342.
- Fielding R. M. 1991. Liposomal drug delivery. Advantages and limitations from a clinical pharmacokinetic and therapeutic perspective. Clin. Pharmacokinet. V. 21. No. 3. P. 155.
- Ingram L. O. 1976. Adaptation of membrane lipids to alcohols. J. Bacteriol. V. 125. No. 2. P. 670.
- Kaldybekov D. B., Tonglairoum P., Opanasopit P., Khutoryanskiy V. V. 2018. Mucoadhesive maleimide-functionalised liposomes for drug delivery to urinary bladder. Eur. J. Pharmac. Sc. V. 111. P. 83. 10.1016/j.ejps.2017.09.039' target='_blank'>https://doi: 10.1016/j.ejps.2017.09.039
- Khutoryanskiy V. V. 2011. Advances in mucoadhesion and mucoadhesive polymers. Macromol. Biosci. V.11. P. 748.
- 10.1002/mabi.201000388' target='_blank'>https://doi: 10.1002/mabi.201000388
- Kim H. K., Vasileva E. A., Mishchenko N. P., Fedoreyev S. A., Han J. 2021. Multifaceted clinical effects of echinochrome. Marine Drugs. V. 19. P. 412. 10.3390/md19080412' target='_blank'>https://doi: 10.3390/md19080412
- Knutsen S. H., Myslabodski D. E., Larsen B., Usov A. I. 1994. A modified system of nomenclature for red algal galactans. Botanica Marina. V. 37. No. 2. P. 163
- Lang J. C., Keister J. C., Missel P. J.T., Stancioff D. J. 1993. Use of carrageenans in topical ophthalmic compositions. Patent US5403841A.
- Langdon S. P. (Ed.). 2004. Cancer cell culture: methods and protocols. Seiten: Humana Press Inc. (Hersteller).
- Lieto K., Skopek R., Lewicka A., Stelmasiak M., Klimaszewska E., Zelent A., Szymański Ł., Lewicki S. 2022. Looking into the eyes — in vitro models for ocular research. Int. J. Mol. Sc. V. 23. No. 16. P. 9158. https://doi.org/10.3390/ijms23169158
- Liu Z. 2008. Preparation of botanical samples for biomedical research. Endocr. Metab. Immune Disord. Drug Targets. V. 8. P. 112. 10.2174/187153008784534358' target='_blank'>https://doi: 10.2174/187153008784534358
- Manconi M., Isola R., Falchi A. M., Sinico C., Fadda A. M. 2007. Intracellular distribution of fluorescent probes delivered by vesicles of different lipidic composition. Colloids Surf. B Biointerfaces. V. 57. No. 2. P. 143.
- Mishra G. P., Bagui M., Tamboli V., Mitra A. K. 2011. Recent applications of liposomes in ophthalmic drug delivery. J. Drug Delivery. V. 2011. P. 1. 10.1155/2011/863734' target='_blank'>https://doi: 10.1155/2011/863734
- Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immun. Methods. V. 65. P. 55.
- Nguyen S. T., Nguyen H. T.-L., Truong K. D. 2020. Comparative cytotoxic effects of metanol, etanol and DMSO on human cancer cell lines. Biomed. Res. Ther. V. 7. P. 3855. 10.15419/bmrat.v7i7.614' target='_blank'>https://doi: 10.15419/bmrat.v7i7.614
- Nurul Alimah A. N., Alyautdin R., Agarwal R. 2013. Ocular tissue distribution of liposomes containing lipophilic dye: pegylated versus non-pegylated. In: Proc. Int. Symposium Ocular Pharmacol. Therap. 7—10th March 2013, Paris (additionally enclosed pages).
- Pellegrini G., Rama P., Rocco A., Panaras A., Luca M. 2014. Concise review: hurdles in a successful example of limbal stem cell-based regenerative medicine. Stem Cells. V. 32. P. 26. Pleyer U., Rückert D., Bachmann W., Schmidt K. H., Thiel H. J. 1991. Intraokulare verfugbareit liposomenverkapapselter monoklonare antikerper in kanunchenmodel. efgebnisse einer pilotstude (Germany). Fortschr. Ophthalmol. V. 88. P. 870.
- Rönkkö S., Vellonen K. S., Järvinen K., Toropainen E., Urtti A. 2016. Human corneal cell culture models for drug toxicity studies. Drug Deliv. Transl. Res. V. 6. No. 6. P. 660. https://doi: 10.1007/s13346-016-0330-y
- Schaffer Y. E., Krohn D. L. 1982. Liposomes in topical drug delivery. Invest. Ophthalmol. Vis. Sci. V. 22. P. 220.
- Seyfoddin A., Shaw J., Al-Kassas R. 2010. Solid lipid nanoparticles for ocular drug delivery. Drug delivery. V. 17. P. 467. https://doi: 10.3109/10717544.2010.483257
- Shafaie S., Hutter V., Cook M. T., Brown M. B., Chau D. Y. 2016. In vitro cell models for ophthalmic drug development applications. Biores. Open Access. V. 5. No. 1. P. 94.
- https://doi: 10.1089/biores.2016.0008
- Shit S. C., Shah P. M. 2014. Edible polymers: challenges and opportunities. J. Polymers. V. 2014. P. 1.
- 10.1155/2014/427259' target='_blank'>https://doi: 10.1155/2014/427259
- Soenen S. J., De Cuyper M. 2009. Assessing cytotoxicity of (iron oxide-based) nanoparticles: an overview of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol. Imaging. V. 4. No. 5. P. 207. https://doi: 10.1002/cmmi.282
- Stockert J. C., Blázquez-Castro A., Cañete M., Horobin R. W., Villanueva A. 2012. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. V. 114. No. 8. P. 785.
- Tang B. C., Dawson M., Lai S. K., Wang Y.-Y., Suk J. S., Yang M., Zeitlin P., Boyle M. P., Fu J., Hanes J. 2009. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc. Natl. Acad. Sci. U.S.A. V. 106. P. 19268.
- Thomson R. H. (Ed.) 1971. Naturally Occurring Quinones. London: Academic Press.
- Van Meenen J., Ní Dhubhghaill S., Van den Bogerd B., Koppen C. 2022. An Overview of advanced in vitro corneal models: implications for pharmacological testing. Tissue Eng. Part B Rev. V. 28. No. 3. P. 506. https://doi: 10.1089/ten.TEB.2021.0031
- Yermak I., Gorbach V., Glazunov V., Kravchenko A., Mishchenko N., Pimenova E., Davydova V. 2018. Liposomal form of the echinochrome-carrageenan complex. Mar. Drugs V. 16. P. 324. 10.3390/md16090324' target='_blank'>https://doi: 10.3390/md16090324
- Yermak I., Mischchenko N., Davydova V., Glazunov V., Tarbeeva D., Kravchenko A., Pimenova E., Sorokina, I. 2017. Carrageenans-sulfated polysaccharides from red seaweeds as matrices for the inclusion of echinochrome. Marine Drugs. V. 15. P. 337.
- Yermak I. M., Gorbach V. I., Karnakov I. A., Davydov V. N., Pimenova E. A., Chistyulin, D.А.; Isako, V.V., Glazunov V. P. 2021. Carrageenan gel beads for Echinochrome inclusion: Influence of structural features of carrageenan. Carbohydrate Polymers. V. 272: 118479. https://doi.org/10.1016/j.carbpol.2021.118479
- Yermak I. M., Kim Y. H., Titlynov E. A., Isakov V. V., Solov’eva T.F. 1999. Chemical structure and gel properties of carrageenans from algae belonging to the Gigartinaceae and Tichocarpaceae, collected from the Russian Pacific Coast. J. Applied Phycol. V. 11. P. 41. 10.1023/A:1008071925884' target='_blank'>https://doi: 10.1023/A:1008071925884
Supplementary files
