Umbilical blood as a trophic-growth supplement for cultural work
- Authors: Goncharov A.G.1, Shupletsova V.V.1, Gazatova N.D.1, Melashchenko O.B.1, Yurova K.A.1, Litvinova L.S.1,2
-
Affiliations:
- Immanuel Kant Baltic Federal University
- Siberian State Medical University
- Issue: Vol 66, No 2 (2024)
- Pages: 107-121
- Section: Articles
- URL: https://edgccjournal.org/0041-3771/article/view/669609
- DOI: https://doi.org/10.31857/S0041377124020019
- EDN: https://elibrary.ru/RKMSZJ
- ID: 669609
Cite item
Abstract
This review analyzes the results of modern high-tech research on the use of umbilical cord blood serum/plasma as an additive to culture media for cell culture growth. Since culture media are a key factor in cell culture, the review addresses the composition and properties of the major culture media used in cell biology and regenerative medicine. The authors pay special attention to growth factors; they describe the functional properties of the main families of these polypeptides (fibroblast growth factors, epidermal growth factors, transforming growth factors, differentiation growth factors, epidermal growth factors, endothelial cell growth factors, hematopoietic growth factors, etc.). It was found that one of the most promising sources of growth factors is cord blood serum/plasma. In this publication, the main technologies for cord blood collection and systematic studies on the content of growth factors, cytokines, exosomes and mRNA in cord blood are presented. Experimental data on the use of umbilical cord blood serum/plasma as an additive to culture media for the growth of various cell cultures of animal origin are described. Human umbilical cord blood serum/plasma is an affordable, safe product with a high content of biologically active molecules compared to animal sources. In order for umbilical cord blood serum/plasma to be widely used as an adjunct to culture media, standards for the manufacture and testing of this product must be developed.
Full Text

About the authors
A. G. Goncharov
Immanuel Kant Baltic Federal University
Author for correspondence.
Email: larisalitvinova@yandex.ru
Center of Immunology and Cell Biotechnology
Russian Federation, Kaliningrad, 236041V. V. Shupletsova
Immanuel Kant Baltic Federal University
Email: larisalitvinova@yandex.ru
Center of Immunology and Cell Biotechnology
Russian Federation, Kaliningrad, 236041N. D. Gazatova
Immanuel Kant Baltic Federal University
Email: larisalitvinova@yandex.ru
Center of Immunology and Cell Biotechnology
Russian Federation, Kaliningrad, 236041O. B. Melashchenko
Immanuel Kant Baltic Federal University
Email: larisalitvinova@yandex.ru
Center of Immunology and Cell Biotechnology
Russian Federation, Kaliningrad, 236041K. A. Yurova
Immanuel Kant Baltic Federal University
Email: larisalitvinova@yandex.ru
Center of Immunology and Cell Biotechnology
Russian Federation, Kaliningrad, 236041L. S. Litvinova
Immanuel Kant Baltic Federal University; Siberian State Medical University
Email: larisalitvinova@yandex.ru
Center of Immunology and Cell Biotechnology; Laboratory of Cellular and Microfluidic Technologies
Russian Federation, Kaliningrad, 236041; Tomsk, 634050References
- Абишева З.С., Журунова М.С., Жетписбаева Г.Д. 2017. Влияние белка GDF11 (growth differentiation factor-11) на организм (обзорная статья). Вестник КазНМУ. Т. 2. P. 227. (Abisheva Z.S., Zhurunova M.S., Zhetpisbaeva G.D. 2017. The effect of GDF11 protein (growth differentiation factor-11) on the body (review article). Bulletin of KazNMU. V. 2. P. 227).
- Белобородов В.А., Кельчевская Е.А. 2020. Переливание крови и ее компонентов: учеб. пособие. ФГБОУ ВО ИГМУ Минздрава России, Иркутск: ИГМУ. 87 c. (Beloborodov V.A., Kelchevskaya E.A. 2020. Transfusion of blood and its components: textbook. allowance. FGBOU VO ISMU of the Ministry of Health of Russia, Irkutsk: ISMU. 87 p.)
- Гончаров А.Г., Юрова К.А., Шуплецова В.В., Газатова Н.Д., Мелащенко О.Б., Литвинова Л.С. 2021. Характеристика пуповинной крови и ее использование в клинической практике. Цитология. T. 63. № 5. С. 411. (Goncharov A.G., Yurova K.A., Shupletsova V.V., Gazatova N.D., Melashchenko O.B., Litvinova L.S. 2021. Characterization of cord blood and its use in clinical practice. Tsitologiya. V. 63. P. 411). https://doi.org/10.31857/S0041377121050059
- Зорин В.Л., Копнин П.Б, Зорина А.И., Еремин И.И., Лазарева Н.Л., Чаузова Т.С., Самчук Д.П., Петрикина А.П., Еремин П.С., Корсаков И.Н., Гринаковская О.С., Котенко К.В., Пулин А.А. 2014. Оптимизация условий получения и ведения культур фибробластов кожи и десны человека. Гены & Клетки. Т. IX. № 2. С. 53. (Zorin V.L., Kopnin P.B., Zorina A.I., Eremin I.I., Lazareva N.L., Chauzova T.S., Samchuk D.P., Petrikina A.P., Eremin P.S., Korsakov I.N., Grinakovskaya O.S., Solovieva E.V., Kotenko K.V., Pulin A.A. 2014. Optimization of conditions of skin and gingival mucosa derived human fibroblasts obtainment and cultivation. Genes and Cells. V. IX. P. 53).
- Колокольцева Т.Д., Сабурина И.Н., Кубатиев А.А. 2016. Современные способы выделения и культивирования клеток человека и животных: учебное пособие. М.: ФГБОУ ДПО РМАНПО. 50 c. (Kolokoltseva T.D., Saburina I.N., Kubatiev A.A. 2016. Modern isolation and cultivation of human and animal cells: a textbook. Moscow: FGBOU DPO RMANPO. 50 p.).
- Литвинова Л.С., Гончаров А.Г., Шуплецова В.В., Газатова Н.Д., Мелащенко О.Б., Юрова К.А., Пестрикова А.А. 2020. Анализ правового регулирования обращения пуповинной крови и ее компонентов в Российской Федерации и за рубежом. Гены и Клетки. Т. 15. № 4. С. 88. (Litvinova L.S., Goncharov A.G., Shupletsova V.V., Gazatova N.D., Melashchenko O.B., Yurova K.A., Pestrikova A.A. 2020. Analysis of the legal regulation of the circulation of cord blood and its components in the Russian Federation and abroad. Genes and Cells. V. 15. P. 88). https://doi.org/10.23868/202012014
- Романов Ю.А., Романов А.Ю. 2018. Ткани перинатального происхождения – уникальный источник клеток для регенеративной медицины. Часть I. Пуповинная кровь. Неонатология: новости, мнения, обучение. Т. 6. № 2/20. C. 64. (Romanov Yu.A., Romanov A.Yu. 2018. Tissues of perinatal origin – a unique source of cells for regenerative medicine. Part I. Cord blood. Neonatology: news, opinions, training. V. 6. P. 64).
- Танасийчук И.С., Михайленко Л.П., Маланчук О.Н. Фетисова О.А. 2017. Общий анализ пуповинной крови как возможного источника гемопоэтических стволовых клеток. Лабораторная диагностика. Восточная Европа. Т. 6. № 3. C. 380. (Tanasiychuk I.S., Mikhailenko L.P., Malanchuk O.N. Fetisova O.A. 2017. General analysis of cord blood as a possible source of hematopoietic stem cells. Laboratory Diagnostics. Eastern Europe. V. 6. P. 380).
- Трухан И.С. 2018. Питательная среда как ключевой фактор культивирования клеток млекопитающих Международный журнал прикладных и фундаментальных исследований. Т. 12. № 1. С. 165. (Trukhan I.S. 2018. Nutrient medium as a key factor in the cultivation of mammalian cells International J. Applied Basic Res. V. 12. P. 165).
- Тюмина О.В. 2012. Пуповинная кровь: заготовка, хранение, трансплантация и регенеративная медицина. СПб.: Синтез Бук, Наука. С. 352. (Tyumina O.V. 2012. Cord blood: harvesting, storage, transplantation and regenerative medicine. St. Petersburg: Synthesis Book, Nauka. Р. 352).
- Франциянц Е.М., Моисеенко Т.И., Якубова Д.Ю., Черярина Н.Д., Меньшенина А.П., Вереникина Е.В., Адамян М.Л. 2020. Факторы семейства VEGF, IGF и TGF-β1 в ткани сальника при раке яичников. РМЖ. Медицинское обозрение. Т. 3. С. 132. https://doi.org/10.32364/2587-6821-2020-4-3-132-136. (Frantsyants E.M., Moiseenko T.I., Yakubova D.Yu., Cheryarina N.D., Menshenina A.P., Verenikina E.V., Adamyan M.L. 2020. VEGF, IGF and TGF-β1 family factors in omental tissue in ovarian cancer. RMJ. Med. Review. V. 3. P. 132).
- Afzal E., Pakzad M., Nouri M., Moghadasali R., Zarrabi M. 2023. Human umbilical cord serum as an alternative to fetal bovine serum for in vitro expansion of umbilical cord mesenchymal stromal cells. Cell Tissue Bank. V. 24. P. 59. https://doi.org/10.1007/s10561-022-10011-x
- Al-Samerria S., Radovick S. 2021. The role of insulin-like growth factor-1 (IGF-1) in the control of neuroendocrine regulation of growth. Cells. V. 10. P. 2664. https://doi.org/10.3390/cells10102664
- Anderegg U., Halfter N., Schnabelrauch M., Hintze V. 2021. Collagen/glycosaminoglycan-based matrices for controlling skin cell responses. Biol. Chem. V. 402. P. 1325. https://doi.org/10.1515/hsz-2021-0176
- Baba K., Yamazaki Y., Sone Y., Sugimoto Y., Moriyama K., Sugimoto T., Kumazawa K., Shimakura Y., Takeda A. 2019. An in vitro long-term study of cryopreserved umbilical cord blood-derived platelet-rich plasma containing growth factors-PDGF-BB, TGF-β, and VEGF. J. Craniomaxillofac. Surg. V. 47. P. 668. https://doi.org/10.1016/j.jcms.2019.01.020
- Baig M.H., Ahmad K., Moon J.S., Park S.Y., Ho Lim J., Chun H.J., Qadri A.F., Hwang Y.C., Jan A.T., Ahmad S.S., Ali S., Shaikh S., Lee E.J., Choi I. 2022. Myostatin and its regulation: A comprehensive review of myostatin inhibiting strategies. Front. Physiol. V. 13. Р. 876078. https://doi.org/10.3389/fphys.2022.876078
- Balaban C.L., Suarez C.A., Boncompain C.A., Peressutti-Bacci N., Ceccarelli E.A., Morbidoni H.R. 2022. Evaluation of factors influencing expression and extraction of recombinant bacteriophage endolysins in Escherichia coli. Microb. Cell Fact. V. 21. P. 40. https://doi.org/10.1186/s12934-022-01766-9
- Bartolo I., Reis R.L., Marques A.P., Cerqueira M.T. 2022. Keratinocyte growth factor-based strategies for wound re-epithelialization. Tiss. Eng. Part. B Rev. V. 28. P. 665. https://doi.org/10.1089/ten.TEB.2021.0030
- Barug D., Goorden S., Herruer M., Müller M., Brohet R., de Winter P. 2014. Reference values for interleukin-6 and interleukin-8 in cord blood of healthy term neonates and their association with stress-related perinatal factors. PLoS One. V. 9. P. e114109. https://doi.org/10.1371/journal.pone.0114109
- Baust J.M., Buehring G.C., Campbell L., Elmore E., Harbell J.W., Nims R.W., Price P., Reid Y.A., Simione F. 2017. Best practices in cell culture: an overview. In Vitro Cell Dev. Biol. Anim. V. 53. P. 669. https://doi.org/10.1007/s11626-017-0177-7
- Belladonna M.L., Grohmann U. 2013. Bioengineering heterodimeric cytokines: Turning promiscuous proteins into therapeutic agents. Biotechnol. Genet. Eng. Rev. V. 29. P. 149. https://doi.org/10.1080/02648725.2013.801228
- Berasain C., Avila M.A. 2014. Amphiregulin. Semin. Cell Dev. Biol. V. 28. P. 31. https://doi.org/10.1016/j.semcdb.2014.01.005
- Blázquez-Prunera A., Díez J.M., Gajardo R., Grancha S. 2017. Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction. Stem Cell Res. Ther. V. 8. P. 103. https://doi.org/10.1186/s13287-017-0552-z
- Bui H.T.H., Nguyen L.T., Than U.T.T. 2021. Influences of xeno-free media on mesenchymal stem cell expansion for clinical application. Tiss. Eng. Regen. Med. V. 18. P. 15. https://doi.org/10.1007/s13770-020-00306-z
- Campagnoli C., Fisk N., Overton T., Bennett P., Watts T., Roberts I. 2000. Circulating hematopoietic progenitor cells in first trimester fetal blood. Blood. V. 95. P. 1967.
- Cardoso R.M.S., Rodrigues S.C., Gomes C.F., Duarte F.V., Romao M., Leal E.C., Freire P.C., Neves R., Simões-Correia J. 2021. Development of an optimized and scalable method for isolation of umbilical cord blood-derived small extracellular vesicles for future clinical use. Stem Cells Transl. Med. V. 10. P. 910. https://doi.org/10.1002/sctm.20-0376
- Caseiro A.R., Ivanova G., Pedrosa S.S., Branquinho M.V., Georgieva P., Barbosa P.P., Santos J.D., Magalhães R., Teixeira P., Pereira T., Maurício A.C. 2018. Human umbilical cord blood plasma as an alternative to animal sera for mesenchymal stromal cells in vitro expansion – A multicomponent metabolomic analysis. PLoS One. V. 13. P. e0203936. https://doi.org/10.1371/journal.pone.0203936
- Chakraborty A., Dutta J., Das S., Datta H. 2013. Effect of cord blood serum on ex vivo human limbal epithelial cell culture. J. Ocul. Biol. Dis. Infor. V. 5. P. 77. https://doi.org/10.1007/s12177-013-9106-5
- Che X., Hornig M., Bresnahan M., Stoltenberg C., Magnus P., Surén P., Mjaaland S., Reichborn-Kjennerud T., Susser E., Lipkin W.I. 2022. Maternal mid-gestational and child cord blood immune signatures are strongly associated with offspring risk of ASD. Mol. Psychiatry. V. 27. P. 1527. https://doi.org/10.1038/s41380-021-01415-4
- Chen X.D., Liu S.X., Shan Y.L., Cai W., Tan S., Hu M.Y., Lu Z.Z. 2020. The proatherogenic effect of high salt diet combined with focal hypoperfusion on spontaneous hypertension rat. Zhonghua Yi Xue Za Zhi. V. 100. P. 3407. https://doi.org/10.3760/cma.j.cn112137-20200806-02292
- Chung M.I., Bujnis M., Barkauskas C.E., Kobayashi Y., Hogan B.L.M. 2018. Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation. Development. V. 145, dev163014. https://doi.org/10.1242/dev.163014
- Custo S., Baron B., Felice A., Seria E. 2022. A comparative profile of total protein and six angiogenically-active growth factors in three platelet products. GMS Interdiscip. Plast. Reconstr. Surg. DGPW. V. 11. Doc06. https://doi.org/10.3205/iprs000167
- D’Arena G., Musto P., Cascavilla N., Di Giorgio G., Zendoli F., Carotenuto M. 1996. Human umbilical cord blood: immunophenotypic heterogeneity of CD34+ hematopoietic progenitor cells. Haematologica. V. 81. P. 404.
- Dauber K., Becker D., Odendahl M., Seifried E., Bonig H., Tonn T. 2011. Enumeration of viable CD34(+) cells by flow cytometry in blood, bone marrow and cord blood: results of a study of the novel BD™ stem cell enumeration kit. Cytother. V. 13. P. 449. https://doi.org/10.3109/14653249.2010.529894
- De Kinderen P., Meester J., Loeys B., Peeters S., Gouze E., Woods S., Mortier G., Verstraeten A. 2022. Differentiation of induced pluripotent stem cells into chondrocytes: Methods and applications for disease modeling and drug discovery. J. Bone Miner. Res. V. 37. P. 397. https://doi.org/10.1002/jbmr.4524
- de Miguel-Gómez L., López-Martínez S., Campo H., Francés-Herrero E., Faus A., Díaz A., Pellicer A., Domínguez F., Cervelló I. 2021. Comparison of different sources of platelet-rich plasma as treatment option for infertility-causing endometrial pathologies. Fertil. Steril. V. 115. P. 490. https://doi.org/10.1016/j.fertnstert.2020.07.053
- Denihan N.M., Looney A., Boylan G.B., Walsh B.H., Murray D.M. 2013. Normative levels of Interleukin 16 in umbilical cord blood. Clin. Biochem. V. 46. P. 1857. https://doi.org/10.1016/j.clinbiochem.2013.07.012
- Derynck R., Turley S.J., Akhurst R.J. 2021. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. V. 18. P. 9. https://doi.org/10.1038/s41571-020-0403-1
- Dessels C., Potgieter M., Pepper M.S. 2016. Making the switch: Alternatives to fetal bovine serum for adipose-derived stromal cell expansion. Front. Cell Dev. Biol. V. 4. P. 115. https://doi.org/10.3389/fcell.2016.00115
- Dewidar B., Meyer C., Dooley S., Meindl-Beinker A.N. 2019. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated. Cells. V. 8. P. 1419. https://doi.org/10.3390/cells8111419
- Diaz-Saez F., Blanco-Sinfreu C., Archilla-Ortega A., Sebastian D., Romero M., Hernandez-Alvarez M.I., Mora S., Testar X., Ricart W., Fernandez-Real J.M., Moreno-Navarrete J.M., Aragones J., Camps M., Zorzano A., Guma A. 2021. Neuregulin 4 downregulation induces insulin resistance in 3T3-L1 adipocytes through inflammation and autophagic degradation of GLUT4 vesicles. Int. J. Mol. Sci. V. 22. P. 12960. https://doi.org/10.3390/ijms222312960
- Ding Y., Lu Z., Yuan Y., Wang X., Li D., Zeng Y. 2013. Comparison of human cord blood mesenchymal stem cell culture between using human umbilical cord plasma and using fetal bovine serum. Sheng Wu Yi, Xue Gong Cheng, Xue Za Zhi. V. 30. P. 1279.
- Dong L., Zhang R.H., Zhou W.D., Li Y.F., Li H.Y., Wu H.T., Shi X.H., Jonas J.B., Wei W.B. 2022. Epiregulin, epigen and betacellulin antibodies and axial elongation in young guinea pigs with lens-induced myopization. BMC Ophthalmol. V. 22. P. 193. https://doi.org/10.1186/s12886-022-02417-8
- Dougan M., Dranoff G., Dougan S. 2019. GM-CSF, IL-3, and IL-5 Family of cytokines: Regulators of inflammation. Immunity. V. 50. P. 796. https://doi.org/10.1016/j.immuni.2019.03.022
- Drouin E.E., Seward R.J., Strle K., McHugh G., Katchar K., Londoño D., Yao C., Costello C.E., Steere A.C. 2013. A novel human autoantigen, endothelial cell growth factor, is a target of T and B cell responses in patients with Lyme disease. Arthritis Rheum. V. 65. P. 186. https://doi.org/10.1002/art.37732
- Eguchi R., Kawabe J.I., Wakabayashi I. 2022. VEGF-independent angiogenic factors: Beyond VEGF/VEGFR2 signaling. J. Vasc. Res. V. 59. P. 78. https://doi.org/10.1159/000521584
- Ehrhart J., Sanberg P.R., Garbuzova-Davis S. 2018. Plasma derived from human umbilical cord blood: Potential cell-additive or cell-substitute therapeutic for neurodegenerative diseases. J. Cell Mol. Med. V. 22. P. 6157. https://doi.org/10.1111/jcmm.13898
- Esmaeli A., Moshrefi M., Shamsara A., Eftekhar-Vaghefi S.H., Nematollahi-Mahani S.N. 2016. Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum. Int. J. Reprod. Biomed. V. 14. P. 567.
- Esposito P., Picciotto D., Battaglia Y., Costigliolo F., Viazzi F., Verzola D. 2022. Myostatin: Basic biology to clinical application. Adv. Clin. Chem. V. 106. P. 181. https://doi.org/10.1016/bs.acc.2021.09.006
- Farooq M., Khan A.W., Kim M.S., Choi S. 2021. The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration. Cells. V. 10. P. 3242. https://doi.org/10.3390/cells10113242
- Garanina E.E., Gatina D., Martynova E.V., Rizvanov A., Khaiboullina S., Salafutdinov I. 2017. Cytokine profiling of human umbilical cord plasma and human umbilical cord blood mononuclear cells. Blood. V. 130. P. 4814. https://doi.org/10.1182/blood.V130.Suppl_1.4814.4814
- Gedikbaşi A., Salihoğlu Ö., Çankaya A., Arica V., Akkuş Ch., Hatipoğlu S., Yaşar L. 2014. The evaluation of cord blood interleukin-1β levels in normal and caesarean deliveries. Hum. Exp. Toxicol. V. 33. P. 1193. https://doi.org/10.1177/0960327113499049
- Gillman C.E., Jayasuriya A.C. 2021. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci. Eng. C Mater. Biol. Appl. V. 130. P. 112466. https://doi.org/10.1016/j.msec.2021.112466
- Gródecka-Szwajkiewicz D., Ulańczyk Z., Zagrodnik E., Łuczkowska K., Rogińska D., Kawa M.P., Stecewicz I., Safranow K., Machaliński B. 2020. Differential secretion of angiopoietic factors and expression of microRNA in umbilical cord blood from healthy appropriate-for-gestational-age preterm and term newborns-in search of biomarkers of angiogenesis-related processes in preterm birth. Int. J. Mol. Sci. V. 21. P. 1305. https://doi.org/10.3390/ijms21041305
- Hassan G., Kasem I., Soukkarieh C., Aljamali M. 2017. A simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: Using explant method and umbilical cord blood serum. Int. J. Stem Cells. V. 10. P. 184. https://doi.org/10.15283/ijsc17028
- Hassanzadeh A., Shamlou S., Yousefi N., Nikoo M., Verdi J. 2022. Genetically-modified stem cell in regenerative medicine and cancer therapy. A new era. Curr. Gene Ther. V. 22. P. 23. https://doi.org/10.2174/1566523221666210707125342
- Hessefort H., Gross A., Seeleithner S., Hessefort M., Kirsch T., Perkams L., Bundgaard K.O., Gottwald K., Rau D., Graf C.G.F., Rozanski E., Weidler S., Unverzagt C. 2021. Chemical and enzymatic synthesis of sialylated glycoforms of human erythropoietin. Angew. Chem. Int. Ed. Engl. V. 60. P. 25922. https://doi.org/10.1002/anie.202110013
- Heubel B., Nohe A. 2021. The role of BMP signaling in osteoclast regulation. J. Dev. Biol. V. 9. P. 24. https://doi.org/10.3390/jdb9030024
- Hodgkinson T., Shen B., Diwan A., Hoyland J.A., Richardson S.M. 2019. Therapeutic potential of growth differentiation factors in the treatment of degenerative disc diseases. JOR Spine. V. 2, e1045. https://doi.org/10.1002/jsp2.1045
- Huang H., Yin K., Tang H. 2020. Macrophage amphiregulin-pericyte TGF-β axis: A novel mechanism of the immune system that contributes to wound repair. Acta Biochim. Biophys. Sin (Shanghai). V. 52. P. 463. https://doi.org/10.1093/abbs/gmaa001
- Ibrahim A.M., Chauhan L., Bhardwaj A., Sharma A., Fayaz F., Kumar B., Alhashmi M., AlHajri N., Alam M.S., Pottoo F.H. 2022. Brain-derived neurotropic factor in neurodegenerative disorders. Biomedicines. V. 10. P. 1143. https://doi.org/10.3390/biomedicines10051143
- Imam S.S., Al-Abbasi F.A., Hosawi S., Afzal M., Nadeem M.S., Ghoneim M.M., Alshehri S., Alzarea S.I., Alquraini A., Gupta G., Kazmi I. 2022. Role of platelet rich plasma mediated repair and regeneration of cell in early stage of cardiac injury. Regen. Ther. V. 19. P. 144. https://doi.org/10.1016/j.reth.2022.01.006
- Ishibashi J., Isohama Y. 2021. Bisacodyl suppresses TGF-α-induced MUC5AC production in NCI-H292 cells. Biol. Pharm. Bull. V. 44. P. 590. https://doi.org/10.1248/bpb.b20-00886
- Jeppesen D.K., Fenix A.M., Franklin J.L., Higginbotham J.N., Zhang Q., Zimmerman L.J., Liebler D.C., Ping J., Liu Q., Evans R., Fissell W.H., Patton J.G., Rome L.H., Burnette D.T., Coffey R.J. 2019. Reassessment of exosome composition. cell. V. 177. P. 428. https://doi.org/10.1016/j.cell.2019.02.029
- Jing Q., Wang Y., Liu H., Deng X., Jiang L., Liu R., Song H., Li J. 2016. FGFs: Crucial factors that regulate tumour initiation and progression. Cell Prolif. V. 49. P. 438. https://doi.org/10.1111/cpr.12275
- Kazlauskas A. 2017. PDGFs and their receptors. Gene. V. 614. P. 1. https://doi.org/10.1016/j.gene.2017.03.003
- Keski-Nisula L., Lappalainen M.H., Mustonen K., Hirvonen M.R., Pfefferle P.I., Renz H., Pekkanen J., Roponen M. 2010. Production of interleukin-5, -10 and interferon-γ in cord blood is strongly associated with the season of birth. Clin. Exp. Allergy. V. 40. P. 1658. https://doi.org/10.1111/j.1365-2222.2010.03601.x
- Kim J.M., Lin C., Stavre Z., Greenblatt M.B., Shim J.H. 2020. Osteoblast-osteoclast communication and bone homeostasis. Cells. V. 9. P. 2073. https://doi.org/10.3390/cells9092073
- Kuo D., Ding J., Cohn I.S., Zhang F., Wei K., Rao D.A., Rozo C., Sokhi U.K., Shanaj S., Oliver D.J., Echeverria A.P., DiCarlo E.F., Brenner M.B., Bykerk V.P., Goodman S.M., Raychaudhuri S., Rätsch G., Ivashkiv L.B., Donlin L.T. 2019. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. V. 11, eaau8587. https://doi.org/10.1126/scitranslmed.aau8587
- Kwok Y.K., Tang M.H., Law H.K., Ngai C.S., Lau Y.L., Lau E.T. 2007. Maternal plasma or human serum albumin in wash buffer enhances enrichment and ex vivo expansion of human umbilical cord blood CD34+ cells. Br. J. Haematol. V. 137. P. 468. https://doi.org/10.1111/j.1365-2141.2007.06606.x
- Laplace-Builhe B., Barthelaix A., Assou S., Bohaud C., Pratlong M., Severac D., Tejedor G., Luz-Crawford P., Nguyen-Chi M., Mathieu M., Jorgensen C., Djouad F. 2021. NRG1/ErbB signalling controls the dialogue between macrophages and neural crest-derived cells during zebrafish fin regeneration. Nat. Commun. V. 12. P. 6336. https://doi.org/10.1038/s41467-021-26422-5
- Lee H.J., Hong Y.J., Kim M. 2021. Angiogenesis in chronic inflammatory skin disorders. Int. J. Mol. Sci. V. 22. P. 12035. https://doi.org/10.3390/ijms222112035
- Lees-Shepard J.B., Flint K., Fisher M., Omi M., Richard K., Antony M., Chen P.J., Yadav S., Threadgill D., Maihle N.J., Dealy C.N. 2021. Cross-talk between EGFR and BMP signals regulates chondrocyte maturation during endochondral ossification. Dev. Dyn. V. 251. P. 75. https://doi.org/10.1002/dvdy.438
- Li T., Lu H., Zhou L., Jia M., Zhang L., Wu H., Shan L. 2022. Growth factors-based platelet lysate rejuvenates skin against ageing through NF-κB signalling pathway: In vitro and in vivo mechanistic and clinical studies. Cell Prolif. V. 55, e13212. https://doi.org/10.1111/cpr.13212
- Li Y., Su G., Zhong Y., Xiong Z., Huang T., Quan J., Huang J., Wen X., Luo C., Zheng W., Chen J., Cheng J., Yao W., Lai T. 2021. HB-EGF-induced IL-8 secretion from airway epithelium leads to lung fibroblast proliferation and migration. BMC Pulm. Med. V. 21. P. 347. https://doi.org/10.1186/s12890-021-01726-w
- Lin H., Tian S., Peng Y., Wu L., Xiao Y., Qing X., Shao Z. 2022. IGF signaling in intervertebral disc health and disease. Front. Cell Dev. Biol. V. 9. P. 817099. https://doi.org/10.3389/fcell.2021.817099
- Liu X., Li C., Li J., Xie L., Hong Z., Zheng K., Zhao X., Yang A., Xu X., Tao H., Qiu M., Yang J. 2022. EGF signaling promotes the lineage conversion of astrocytes into oligodendrocytes. Mol. Med. V. 28. P. 50. https://doi.org/10.1186/s10020-022-00478-5
- Lopez J.F., Mikkola A., Sarkanen J.R., Kaartinen I.S., Kuokkanen H.O., Ylikomi T. 2022. Adipose tissue as a source of growth factors to promote wound healing: a human study of skin graft donor sites. J. Wound. Care. V. 31. P. 282. https://doi.org/10.12968/jowc.2022.31.4.282
- Lowery J.W., Rosen V. 2018. The BMP pathway and its inhibitors in the skeleton. Physiol. Rev. V. 98. P. 2431. https://doi.org/10.1152/physrev.00028.2017
- Marei I., Chidiac O., Thomas B., Pasquier J., Dargham S., Robay A., Vakayil M., Jameesh M., Triggle C., Rafii A., Jayyousi A., Suwaidi J. A., Khalil C.A. 2022. Angiogenic content of microparticles in patients with diabetes and coronary artery disease predicts networks of endothelial dysfunction. Cardiovasc. Diabetol. V. 21. P. 17. https://doi.org/10.1186/s12933-022-01449-0
- Markan K.R., Potthoff M.J. 2016. Metabolic fibroblast growth factors (FGFs): Mediators of energy homeostasis. Semin. Cell Dev. Biol. V. 53. P. 85. https://doi.org/10.1016/j.semcdb.2015.09.021
- Meldolesi J. 2018. Exosomes and ectosomes in intercellular communication. Curr. Biol. V. 28. P. R435. https://doi.org/10.1016/j.cub.2018.01.059
- Mun S.H., Park P.S.U., Park-Min K.H. 2020. The M-CSF receptor in osteoclasts and beyond. Exp. Mol. Med. V. 52. P. 1239. https://doi.org/10.1038/s12276-020-0484-z
- Murphy M.B., Blashki D., Buchanan R.M., Yazdi I.K., Ferrari M., Simmons P.J., Tasciotti E. 2012. Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials. V. 33. P. 5308. https://doi.org/10.1016/j.biomaterials.2012.04.007
- Muscella A., Vetrugno C., Cossa L.G., Marsigliante S. 2020. TGF-β1 activates RSC96 Schwann cells migration and invasion through MMP-2 and MMP-9 activities. J. Neurochem. V. 153. P. 525. https://doi.org/10.1111/jnc.14913
- Nakamura-Ishizu A., Suda T. 2020. Multifaceted roles of thrombopoietin in hematopoietic stem cell regulation. Ann. N. Y. Acad. Sci. V. 1466. P. 51. https://doi.org/10.1111/nyas.14169
- Nandi S., Dey R., Samadder A., Saxena A., Saxena A.K. 2022. Natural sourced inhibitors of EGFR, PDGFR, FGFR and VEGFR mediated signaling pathways as potential anticancer agents. Curr. Med. Chem. V. 29. P. 212. https://doi.org/10.2174/0929867328666210303101345
- Noh K.C., Liu X.N., Zhuan Z., Yang C.J., Kim Y.T., Lee G.W., Choi K.H., Kim K.O. 2018. Leukocyte-poor platelet-rich plasma-derived growth factors enhance human fibroblast proliferation in vitro. Clin. Orthop. Surg. V. 10. P. 240. https://doi.org/10.4055/cios.2018.10.2.240
- Oo W.M., Hunter D.J. 2021. Nerve growth factor (NGF) inhibitors and related agents for chronic musculoskeletal pain: A comprehensive review. BioDrugs. V. 35. P. 611. https://doi.org/10.1007/s40259-021-00504-8
- Ornitz D.M., Itoh N. 2015. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. V. 4. P. 215. https://doi.org/10.1002/wdev.176
- Ostrovskaya R.U., Ivanov S.V. 2022. Neuroprotective substances: are they able to protect the pancreatic beta-cells too? Endocr. Metab. Immune Disord. Drug Targets. V. 22. P. 834. https://doi.org/10.2174/1871530322666220303162844
- Pereira T., Ivanova G., Caseiro A.R., Barbosa P., Bartolo P.J., Santos J.D., Luís A.L., Maurício A.C. 2014. MSCs conditioned media and umbilical cord blood plasma metabolomics and composition. PloS one. V. 9, e113769. https://doi.org/10.1371/journal.pone.0113769
- Phelan K., May K.M. 2017. Mammalian cell tissue culture techniques. Curr. Protoc. Mol. Biol. V. 117. P. A.3F.1. https://doi.org/10.1002/cpmb.31. PMID: 28060407
- Pickler R., Brown L., McGrath J., Lyon D., Rattican D., Cheng C.Y., Howland L., Jallo N. 2010. Integrated review of cytokines in maternal, cord, and newborn blood: Part II – associations with early infection and increased risk of neurologic damage in preterm infants. Biol. Res. Nurs. V. 11. P. 377. https://doi.org/10.1177/1099800409344619
- Pietrowska M., Wlosowicz A., Gawin M., Widlak P. 2019. MS-based proteomic analysis of serum and plasma: problem of high abundant components and lights and shadows of albumin removal. Adv. Exp. Med. Biol. V. 1073. P. 57. https://doi.org/10.1007/978-3-030-12298-0_3
- Pikula M., Langa P., Kosikowska P., Trzonkowski P. 2015. Stem cells and growth factors in wound healing. Postepy Hig. Med. Dosw (Online). V. 69. P. 874. https://doi.org/10.5604/17322693.1162989
- Ponomarev L.C., Ksiazkiewicz J., Staring M.W., Luttun A., Zwijsen A. 2021. The BMP pathway in blood vessel and lymphatic vessel biology. Int. J. Mol. Sci. V. 22. P. 6364. https://doi.org/10.3390/ijms22126364
- Pour M.S.S., Vahidi R., Lashkari M., Derakhshani A., Ameri Z., Farsinejad A. 2020. Cord blood serum harvesting by hydroxyethyl starch: a fetal bovine serum alternative in expansion of umbilical cord-derived mesenchymal stem cells. Cytotechnol. V. 72. P. 551. https://doi.org/10.1007/s10616-020-00404-9
- Pranke P., Hendrikx J., Alespeiti G., Nardi N., Rubinstein P., Visser J. 2006. Comparative quantification of umbilical cord blood CD34+ and CD34+ bright cells using the ProCount-BD and ISHAGE protocols. Braz. J. Med. Biol. Res. V. 39. P. 901. https://doi.org/10.1590/s0100-879x2006000700008
- Price P.J. 2017. Best practices for media selection for mammalian cells. In Vitro Cell Dev. Biol. Anim. V. 53. P. 673. https://doi.org/10.1007/s11626-017-0186-6
- Rallapalli S., Guhathakurta S., Bishi D.K., Subbarayan R., Mathapati S., Korrapati P.S. 2021. A critical appraisal of humanized alternatives to fetal bovine serum for clinical applications of umbilical cord derived mesenchymal stromal cells. Biotechnol. Lett. V. 43. P. 2067. https://doi.org/10.1007/s10529-021-03180-4
- Reis C., Chambel S., Ferreira A., Cruz C.D. 2022. Involvement of nerve growth factor (NGF) in chronic neuropathic pain – a systematic review. Rev. Neurosci. V. 34. P. 75. https://doi.org/10.1515/revneuro-2022-0037
- Rhéaume M.E., Perreault J., Fournier D., Trépanier P. 2022. Preparation and growth factor characterization of cord blood-derived plasma, serum, growth factor-rich plasma and induced serum. Cytokine. V. 149. P. 155756. https://doi.org/10.1016/j.cyto.2021.155756
- Richani D., Gilchrist R.B. 2018. The epidermal growth factor network: Role in oocyte growth, maturation and developmental competence. Hum. Reprod. Update. V. 24. P. 1. https://doi.org/10.1093/humupd/dmx029
- Ríos-Galacho M., Martínez-Moreno D., López-Ruiz E., Gálvez-Martín P., Marchal J.A. 2022. An overview on the manufacturing of functional and mature cellular skin substitutes. Tissue Eng. Part B Rev. V. 28. P. 1035. https://doi.org/10.1089/ten.TEB.2021.0131
- Rochette L., Mazini L., Meloux A., Zeller M., Cottin Y., Vergely C., Malka G. 2020. Anti-aging effects of GDF11 on skin. Int. J. Mol. Sci. V. 21. P. 2598. https://doi.org/10.3390/ijms21072598
- Rodrigues S.C., Cardoso R.M.S., Gomes C.F., Duarte F.V., Freire P.C., Neves R., Simoes-Correia J. 2021. Toxicological profile of umbilical cord blood-derived small extracellular vesicles. Membranes (Basel). V. 11. P. 647. https://doi.org/10.3390/membranes11090647
- Romanov Y.A., Vtorushina V.V., Dugina T.N., Romanov A.Y., Petrova N.V. 2019. Human umbilical cord blood serum/plasma: Cytokine profile and prospective application in regenerative medicine. Bull. Exp. Biol. Med. V. 168. P. 173. https://doi.org/10.1007/s10517-019-04670-2
- Rungsiwiwut R., Ingrungruanglert P., Numchaisrika P., Virutamasen P., Phermthai T., Pruksananonda K. 2016. Human umbilical cord blood-derived serum for culturing the supportive feeder cells of human pluripotent stem cell lines. Stem Cells Int. V. 2016. P. 4626048. https://doi.org/10.1155/2016/4626048
- Sadeghi S., Kalhor H., Panahi M., Abolhasani H., Rahimi B., Kalhor R., Mehrabi A., Vahdatinia M., Rahimi H. 2021. Keratinocyte growth factor in focus: A comprehensive review from structural and functional aspects to therapeutic applications of palifermin. Int. J. Biol. Macromol. V. 191. P. 1175. https://doi.org/10.1016/j.ijbiomac.2021.09.151
- Sane M.S., Misra N., Mousa O.M., Czop S., Tang H., Khoo L.T., Jones C.D., Mustafi S.B. 2018. Cytokines in umbilical cord blood-derived cellular product: a mechanistic insight into bone repair. Regen. Med. V. 13. P. 881. https://doi.org/10.2217/rme-2018-0102
- Schär M.O., Diaz-Romero J., Kohl S., Zumstein M.A., Nesic D. 2015. Platelet-rich concentrates differentially release growth factors and induce cell migration in vitro. Clin. Orthop. Relat. Res. V. 473. P. 1635. https://doi.org/10.1007/s11999-015-4192-2
- Shimizu Y., Ntege E.H., Sunami H. 2022. Current regenerative medicine-based approaches for skin regeneration: A review of literature and a report on clinical applications in Japan. Regen. Ther. V. 21. P. 73. https://doi.org/10.1016/j.reth.2022.05.008
- Simonetti A.B., Englert G.E., Campos K., Mergener M., De David C., De Oliveira A.P., Roehe P.M. 2007. Nanobacteria-like particles: A threat to cell cultures. Brazilian J. Microbiol. V. 38. P. 153.
- Singh S.S., Chauhan S.B., Kumar A., Kumar S., Engwerda C.R., Sundar S., Kumar R. 2022. Amphiregulin in cellular physiology, health, and disease: Potential use as a biomarker and therapeutic target. J. Cell Physiol. V. 237. P. 1143. https://doi.org/10.1002/jcp.30615
- Skuratovskaia D., Vulf M., Khaziakhmatova O., Malashchenko V., Komar A., Shunkin E., Gazatova N., Litvinova L. 2021. Exosome limitations in the treatment of inflammatory diseases Curr. Pharm. Des. V. 27. P. 3105. https://doi.org/10.2174/1381612826666201210120444
- Sousa F., Costa-Pereira A.I., Cruz A., Ferreira F.J., Gouveia M., Bessa J., Sarmento B., Travasso R.D.M., Pinto I.M. 2021. Intratumoral VEGF nanotrapper reduces gliobastoma vascularization and tumor cell mass. J. Control. Release. V. 339. P. 381. https://doi.org/10.1016/j.jconrel.2021.09.031
- Stavropoulos A., Wikesjo U.M. 2012. Growth and differentiation factors for periodontal regeneration: A review on factors with clinical testing. J. Periodontal Res. V. 47. P. 545. https://doi.org/10.1111/j.1600-0765.2012.01478.x
- Sulaiman A., McGarry S., Chilumula S. Ch., Kandunuri R., Vinod V. 2021. Clinically translatable approaches of inhibiting TGF-β to target cancer stem cells in TNBC. Biomedicines. V. 9. P. 1386. https://doi.org/10.3390/biomedicines9101386
- Sun C., Tian X., Jia Y., Yang M., Li Y., Fernig D.G. 2022. Functions of exogenous FGF signals in regulation of fibroblast to myofibroblast differentiation and extracellular matrix protein expression. Open Biol. V. 12. P. 210356. https://doi.org/10.1098/rsob.210356
- Sun J., Hu Y., Fu Y., Zou D., Lu J., Lyu C. 2022. Emerging roles of platelet concentrates and platelet-derived extracellular vesicles in regenerative periodontology and implant dentistry. APL Bioeng. V. 6. P. 031503. https://doi.org/10.1063/5.0099872
- Taeger J., Moser C., Hellerbrand C., Mycielska M.E., Glockzin G., Schlitt H.J., Geissler E.K., Stoeltzing O., Lang S.A. 2011. Targeting FGFR/PDGFR/VEGFR impairs tumor growth, angiogenesis, and metastasis by effects on tumor cells, endothelial cells, and pericytes in pancreatic cancer. Mol. Cancer. Ther. V. 10. P. 2157. https://doi.org/10.1158/1535-7163.MCT-11-0312
- Tang Y.T., Huang Y.Y., Zheng L., Qin S.H., Xu X.P., An T.X., Xu Y., Wu Y.S., Hu X.M., Ping B.H., Wang Q. 2017. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int. J. Mol. Med. V. 40. P. 834. https://doi.org/10.3892/ijmm.2017.3080
- Taylor S.R., Markesbery M.G., Harding P.A. 2014. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) and proteolytic processing by a disintegrin and metalloproteinases (ADAM): a regulator of several pathways. Semin. Cell Dev. Biol. V. 28. P. 22. https://doi.org/10.1016/j.semcdb.2014.03.004
- Terashvili M., Bosnjak Z.J. 2019. Stem cell therapies in cardiovascular disease. J. Cardiothorac. Vasc. Anesth. V. 33. P. 209. https://doi.org/10.1053/j.jvca.2018.04.048
- Tominaga K., Suzuki H.I. 2019. TGF-β Signaling in cellular senescence and aging-related pathology. Int. J. Mol. Sci. V. 20. P. 5002. https://doi.org/10.3390/ijms20205002
- Venugopal H., Hanna A., Humeres C., Frangogiannis N.G. 2022. Properties and functions of fibroblasts and myofibroblasts in myocardial infarction. Cells. V. 11. P. 1386. https://doi.org/10.3390/cells11091386
- Vlaski-Lafarge M., Chevaleyre J., Cohen J., Ivanovic Z., Lafarge X. 2020. Discarded plasma obtained after cord blood volume reduction as an alternative for fetal calf serum in mesenchymal stromal cells cultures. Transfusion. V. 60. P. 1910. https://doi.org/10.1111/trf.15920
- Wang J.F., Li F.H., Shen D.L., Song Y., Wang Y.Y., Zhou J.M., Ge J.B. 2021. Effect of neuregulin-1 on cardiac glucose metabolism in rats with experimental myocardial infarction. Zhonghua Xin Xue Guan Bing Za Zhi. V. 49. P. 912. https://doi.org/10.3760/cma.j.cn112148-20210628-00549
- Wang Y., Appiah-Kubi K., Wu M., Yao X., Qian H., Wu Y., Chen Y. 2016. The platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are major players in oncogenesis, drug resistance, and attractive oncologic targets in cancer. Growth Factors. V. 34. P. 64. https://doi.org/10.1080/08977194.2016.1180293
- Widyaningrum R., Burnouf T., Nebie O., Delila L., Wang T.J. 2021. A purified human platelet pellet lysate rich in neurotrophic factors and antioxidants repairs and protects corneal endothelial cells from oxidative stress. Biomed. Pharmacother. V. 142. P. 112046. https://doi.org/10.1016/j.biopha.2021.112046
- Wu J.Y., Lu Y., Chen J.S., Wu S.Q., Tang X.W., Li Y. 2015. Pooled umbilical cord blood plasma for culturing UCMSC and ex vivo expanding umbilical cord blood CD34+ Cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. V. 23. P. 1112. https://doi.org/10.7534/j.issn.1009-2137.2015.04.040
- Yamada N., Matsushima-Nishiwaki R., Masue A., Taguchi K., Kozawa O. 2019. Olive oil polyphenols suppress the TGF-α-induced migration of hepatocellular carcinoma cells. Biomed. Rep. V. 1. P. 1. https://doi.org/10.3892/br.2019.1215
- Yan Y., Wang Q. 2021. BMP Signaling: Lighting up the way for embryonic dorsoventral patterning. Front. Cell Dev. Biol. V. 9. P. 799772. https://doi.org/10.3389/fcell.2021.799772
- Yáñez-Mó M., Siljander P.R., Andreu Z., Zavec A.B., Borràs F.E., Buzas E.I., Buzas K., Casal E., Cappello F., Carvalho J., Colás E., Cordeiro-da Silva A., Fais S., Falcon-Perez J.M., Ghobrial I.M.; et al.; 2015. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. V. 4. P. 27066. https://doi.org/10.3402/jev.v4.27066
- Yen T.T., Thao D.T., Thuoc T.L. 2014. An overview on keratinocyte growth factor: From the molecular properties to clinical applications. Protein Pept. Lett. V. 21. P. 306. https://doi.org/10.2174/09298665113206660115
- Zaiss D.M.W., Gause W.C., Osborne L.C., Artis D. 2015. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity. V. 42. P. 216. https://doi.org/10.1016/j.immuni.2015.01.020
- Zhang X., Kang X., Jin L., Bai J., Liu W., Wang Z. 2018. Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bFGF). Int. J. Nanomedicine. V. 13. P. 3897. https://doi.org/10.2147/IJN.S168998
- Zhou W., Wu F., Yao D., Xie C. 2021. Production of high-purity recombinant human vascular endothelial growth factor (rhVEGF165) by Pichia pastoris. Sheng Wu Gong Cheng Xue Bao. V. 37. P. 4083. https://doi.org/10.13345/j.cjb.210021
- Ziegler C.G., Van Sloun R., Gonzalez S., Whitney K.E., DePhillipo N.N., Kennedy M.I., Dornan G.J., Evans T.A., Huard J., LaPrade R.F. 2019. Characterization of growth factors, cytokines, and chemokines in bone marrow concentrate and platelet-rich plasma: A prospective analysis. Am. J. Sports Med. V. 47. P. 2174. https://doi.org/10.1177/0363546519832003
- Zimmerman A.M., Vierck J.L., O’Reilly B.A., Dodson M.V. 2000. Formulation of a defined medium to maintain cell health and viability in vitro. Methods Cell Sci. V. 22. P. 43. https://doi.org/doi: 10.1023/a:1009832828007
Supplementary files
