Design and selection of guides for CRISPR/Cas9-mediated knockout of the Kcnv2 gene in mouse cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mutations in the human KCNV2 gene cause a rare hereditary disease — cone dystrophy with supernormal rod response (CDSRR), characterized by progressive vision loss and impaired color discrimination. The KCNV2 gene encodes the Kv8.2 subunit of a potassium channel that is critical for the normal function of retinal photoreceptors. Gene therapy offers a promising treatment approach for this condition. To test the efficacy of gene therapy, an appropriate experimental disease model, such as a knockout mouse model, is required. This study focused on selecting optimal guide RNAs for knocking out the Kcnv2 gene using the CRISPR/Cas9 system and testing their efficiency in a mouse cell line. The selected guide RNAs can be utilized to generate a Kcnv2-/- mouse model.

Full Text

Restricted Access

About the authors

E. N. Antonova

Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: antonova.en@genlab.llc
Russian Federation, Dolgoprudny, Moscow Oblast, 141701

A. B. Soroka

Moscow Institute of Physics and Technology (National Research University)

Email: antonova.en@genlab.llc
Russian Federation, Dolgoprudny, Moscow Oblast, 141701

O. N. Mityaeva

Moscow Institute of Physics and Technology (National Research University); Lomonosov Moscow State University; Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Email: antonova.en@genlab.llc
Russian Federation, Dolgoprudny, Moscow Oblast, 141701; Moscow, 119991; Moscow, 125315

P. Yu. Volchkov

Moscow Institute of Physics and Technology (National Research University); Lomonosov Moscow State University; Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Email: antonova.en@genlab.llc
Russian Federation, Dolgoprudny, Moscow Oblast, 141701; Moscow, 119991; Moscow, 125315

References

  1. Andreazzoli M., Barravecchia I., De Cesari C., Angeloni D., Demontis G.C. 2021. Inducible pluripotent stem cells to model and treat inherited degenerative diseases of the outer retina: 3D-organoids limitations and bioengineering solutions. Cells. V. 10. Art. ID 2489. https://doi.org/10.3390/cells10092489
  2. Aslanidis A., Karlstetter M., Walczak Y., Jägle H., Langmann T. 2014. RETINA-specific expression of Kcnv2 is controlled by cone-rod homeobox (Crx) and neural retina leucine zipper (Nrl). Adv. Exp. Med. Biol. V. 801. P. 31. https://doi.org/10.1007/978-1-4614-3209-8_5
  3. Ail D., Malki H., Zin E.A., Dalkara D. 2023. Adeno-associated virus (AAV) – based gene therapies for retinal diseases: where are we? Ther. Adv. Chronic. Dis. V. 16. P. 111. https://doi.org/10.2147/TACG.S383453
  4. Barnard A.R., Tolmachova T., Seabra M.C., MacLaren R.E. 2012. Assessment of visual function by electroretinography following rAAV2-CHM/REP1 gene therapy in a mouse model of choroideremia. Invest. Ophthalmol. Vis. Sci. V. 53. P. 1933. https://doi.org/10.1167/iovs.53.3.1933
  5. Brinkman E.K., Chen T., Amendola M., van Steensel B. 2014. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic. Acids. Res. V. 42. Art. ID e168. https://doi.org/10.1093/nar/gku1112
  6. Bruegmann T., Deecke K., Fladung M. 2019. Mediated genome editing in poplars: evaluating the efficiency of gRNAs in CRISPR/Cas9. Mol. Biol. Rep. V. 20: 3623. https://doi.org/10.1007/s11033-019-04952-8
  7. Carvalho L., Rashwan R., Lim X.R., Brunet A., Miller A.L., Bhatt Y., Fuller-Carter P. , Hunt D. 2023. Pre-clinical efficacy testing of AAV-based gene therapy for KCNV2-deficiency. Investigative Ophthalmol. Visual Sci. V. 64. P. 477. https://doi.org/10.1167/iovs.64.6.477
  8. Chen X., Xu F., Zhu C., Ji J., Zhou X., Feng X., Guang S. 2014. Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Sci. Rep. V. 4. Art. ID 7581. https://doi.org/10.1038/srep07581
  9. Chirinskaite A.V., Rotov A.Y., Ermolaeva M.E., Tkachenko L.A., Vaganova A.N., Danilov L.G., Fedoseeva K.N., Kostin N.A., Sopova J.V., Firsov M.L., Leonova E.I. 2023. Does background matter? A comparative characterization of mouse models of autosomal retinitis pigmentosa rd1 and Pde6b-KO. Int. J. Mol. Sci. V. 24. Art. ID 17180. https://doi.org/10.3390/ijms242417180
  10. Czirjak G., Toth Z.E., Enyedi P. 2007. Characterization of the heteromeric potassium channel formed by kv2.1 and the retinal subunit kv8.2 in Xenopus oocytes. J. Neurophysiol. V. 98. P. 1213. https://doi.org/10.1152/jn.00093.2007
  11. Da Silva-Buttkus P., Spielmann N., Klein-Rodewald T., Schütt C., Aguilar-Pimentel A., Amarie O.V., Becker L., Calzada-Wack J., Garrett L., Gerlini R., Kraiger M., Leuchtenberger S., Östereicher M.A., Rathkolb B., Sanz-Moreno A., Stöger C., Hölter S.M., Seisenberger C., Marschall S., Fuchs H., Gailus-Durner V., Hrabě de Angelis M. 2023. Knockout mouse models as a resource for the study of rare diseases. Mamm. Genome. V. 34. P. 244. https://doi.org/10.1007/s00335-023-09986-z
  12. Gill J.S., Georgiou M., Kalitzeos A., Moore A.T., Michaelides M. 2019. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. Br. J. Ophthalmol. V. 103. P. 711. https://doi.org/10.1136/bjophthalmol-2018-312983
  13. Hart N.S., Mountford J.K., Voigt V., Fuller-Carter P., Barth M., Nerbonne J.M., Hunt D.M., Carvalho L.S. 2019. The role of the voltage-gated potassium channel proteins Kv8.2 and Kv2.1 in vision and retinal disease: insights from the study of mouse gene knock-out mutations. eNEURO. V. 6. Art. ID 0032. https://doi.org/10.1523/ENEURO.0032-19.2019
  14. Hunt D.M., Har N., Mountford J.K., Barth M., Fuller-Carter P., Carvalho L.S. 2018. Role of the voltage-gated potassium channel subunit Kv8.2 in inherited retinal disease and interaction with other channel proteins. ARVO Ann. Meeting Abstract. V. 59. Art. ID 2328. https://doi.org/10.1167/iovs.59.6.2328
  15. Jensen K.T., Floe L., Petersen T.S., Huang J., Xu F., Bolund L., Luo Y., Lin L. 2017. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Lett. V. 591. V. 1892. https://doi.org/10.1002/1873-3468.12694
  16. Liang G., Zhang H., Lou D., Yua D. 2016. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci. Rep. V. 6. P. 21451. https://doi.org/10.1038/srep21451
  17. Maguire A.M., Bennett J., Aleman E.M., Leroy B.P., Aleman T.S. 2021. Clinical perspective: treating RPE65-associated retinal dystrophy. Mol. Ther. V. 29. P. 442. https://doi.org/10.1016/j.ymthe.2020.10.025
  18. Michaelides M., Hardcastle A.J., Hunt D.M., Moore A.T. 2006. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv. Ophthalmol. V. 51. P. 232. https://doi.org/10.1016/j.survophthal.2006.02.008
  19. Michaelides M., Holder G.E., Webster A.R., Hunt D.M., Bird A.C., Fitzke F.W., Mollon J.D., Moore A.T. 2005. A detailed phenotypic study of “cone dystrophy with supernormal rod ERG”. Br. J. Ophthalmol. V. 89. P. 332. https://doi.org/10.1136/bjo.2004.047746
  20. Shahi P.K., Srinivasan A., Pattnaik B.R. 2022. A novel Kcnv2 nonsense mutation mouse model of cone dystrophy with supernormal rod response. Invest. Ophthalmol. Visual Sci. V. 63. Art. ID 1784. https://doi.org/10.1167/iovs.63.6.1784
  21. Skarnes W.C., Rosen B., West A.P., Koutsourakis M., Bushell W., Iyer V., Mujica A.O., Thomas M., Harrow J., Cox T., Jackson D., Severin J., Fu J., Nefedov M., de Jong P. J., Stewart A.F., Bradley A. 2011. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. V. 474. P. 337. https://doi.org/10.1038/nature10163
  22. Uddin F., Rudin C.M., Sen T. 2020. CRISPR Gene therapy: applications, limitations, and implications for the future. Front. Oncol. V. 10. Art. ID 1387. https://doi.org/10.3389/fonc.2020.01387
  23. Vincent A., Wright T., Garcia-Sanchez Y., Kisilak M., Campbell M., Westall C., Heon E. 2013. Phenotypic characteristics including in vivo cone photoreceptor mosaic in KCNV2-related “cone dystrophy with supernormal rod electroretinogram”. Invest. Ophthalmol. Vis. Sci. V. 54. P. 898. https://doi.org/10.1167/iovs.12-10664
  24. Wiles M.V., Qin W., Cheng A.W., Wang H. 2015. CRISPR–Cas9-mediated genome editing and guide RNA design. Mamm. Genome. V. 26. P. 501. https://doi.org/10.1007/s00335-015-9579-0
  25. Wu H., Cowing J.A., Michaelides M., Wilkie S.E., Jeffery G., Jenkins S.A., Mester V., Bird A.C., Robson A.G., Holder G.E., Moore A.T., Hunt D.M., Webster A.R. 2006. Mutations in the gene KCNV2 encoding a voltage-gated potassium channel subunit cause “cone dystrophy with supernormal rod electroretinogram” in humans. Am. J. Hum. Genet. V. 79. P. 574. https://doi.org/10.1086/507885
  26. Wissinger B., Dangel S., Jagle H., Hansen L., Baumann B., Rudolph G., Wolf C., Bonin M., Koeppen K., Ladewig T., Kohl S., Zrenner E., Rosenberg T. 2008. Cone dystrophy with supernormal rod response is strictly associated with mutations in KCNV2. Invest. Ophthalmol. Vis. Sci. V. 49. P. 751. https://doi.org/10.1167/iovs.07-1038
  27. Zuker M., Stiegler P. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. V. 9. P. 133. https://doi.org/10.1093/nar/9.1.133

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram of the Kcnv2 gene with designated sites of recognition by guides in the SnapGene program. The purple color shows the names and locations of the primers for amplification of the region covering the large and small deletions.

Download (39KB)
3. Fig. 2. Electrophorogram based on the results of PCR screening of B16-F10 cells. a – Large deletions, b – small deletion. (K–) – PCR product from untransfected cells (negative control), M – DNA length marker. Electrophoresis in 1.5% (a) and 3% (b) agarose gel.

Download (191KB)
4. Fig. 3. The efficiency of deletion induction, obtained from the results of electrophoregram analysis using densitometry in the ImageJ program.

Download (49KB)
5. Fig. 4. Indel frequencies in the range of 10 nucleotides from the predicted cutting site. a – for the gx/2 guide, b – for the g4 guide.

Download (71KB)
6. Fig. 5. Confirmation of a small deletion by Sanger sequencing. Chromatogram corresponding to deletion by g3/1–gx/2 guides (top) and control chromatogram obtained from cells without deletion (bottom).

Download (321KB)
7. Fig. 6. Confirmation of large deletions by Sanger sequencing. The upper chromatograms were obtained from a DNA fragment with a deletion, and the lower ones from a DNA fragment without a deletion: a – gx/2–g4, b – g3/1–g6, c – gx/2–g6, d – g3/1–g4.

Download (6MB)
8. Fig. DM1. Plasmid (# 52961; Addgene, USA). a is a diagram showing the correspondence of the sticky ends of the vector and the sticky ends of paired oligonucleotides; the BsmBI restrictase recognition sites are highlighted in purple, and the unique part of the guide is shown in green using the g1 guide as an example. b is a plasmid map with the BsmBI restriction sites and the cut–out product. b is the restriction product on the electrophoregram.

Download (322KB)
9. Fig. DM2. Electrophoregram based on the results of PCR screening of genomic DNA with small deletions isolated from B16-F10 cells. The electrophorogram shows the pairs of guides used to create the small deletion: g3/1 and g2/1, g2/1 and gx/2, g3/1 and gx/2, g4/1 and gx/2. M is a marker of DNA lengths, K is a negative control.

Download (84KB)
10. Fig. DM3. Gel electrophoresis based on the results of PCR screening of genomic DNA with large deletions isolated from B16-F10 cells. The electrophorogram shows the pairs of guides used to create a large deletion: g1–gx/24; g1–g3/1; g3–gx/2; g-g2/1; g3/1–g6; g1–g6; g3–g6; g3/1–g4; g1–g4; gx/2–g4; gx/2–g6; g3/1–g6. M is a marker of DNA lengths, K is a negative control.

Download (221KB)
11. Fig. DM4. Secondary guide structures obtained in RNAfold Web Server. a are the secondary structures of the guides used; b is the secondary structure with the designations RAR-hairpin (repeat and anti-repeat region), hairpins (stem loop) 1, 2 and 3, 20–nucleotide sequence (Bruegmann et al., 2019).

Download (86KB)

Copyright (c) 2024 Russian Academy of Sciences