Endoboost plus is the medium of choice for the cell mass expansion of ecfc isolated from adult blood

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Endothelial colony-forming cells (ECFC) have a powerful clonogenic and reparative potential, which makes them a promising material for cell therapy, experimental biology and medicine. The ability to rapidly expand the cell mass is the key to the use of ECFCs in these areas. We are developing the composition of nutrient medium for EndoBoost and EndoBoost Plus endothelial cells. Endothelial cell growth medium2 (EGM2) is recognised as the ‘gold standard’ in ECFC cultivation. The aim of our study was to comparatively evaluate the efficacy of EGM2, EndoBoost and EndoBoost Plus nutrient media for ECFC culture growth. Maximum proliferative activity of ECFC was detected in EndoBoost Plus medium, EndoBoost was found to be less active and the lowest result corresponded to EGM2. Thus, EndoBoost Plus is the preferred medium for cell culture of ECFCs isolated from adult peripheral blood.

Full Text

Restricted Access

About the authors

V. G. Matveeva

Research Institute for Complex Issues of Cardiovascular Diseases

Author for correspondence.
Email: matveeva_vg@mail.ru
Russian Federation, 650002, Kemerovo

D. K. Shishkova

Research Institute for Complex Issues of Cardiovascular Diseases

Email: matveeva_vg@mail.ru
Russian Federation, 650002, Kemerovo

Е. А. Torgunakova

Research Institute for Complex Issues of Cardiovascular Diseases

Email: matveeva_vg@mail.ru
Russian Federation, 650002, Kemerovo

A. G. Kutikhin

Research Institute for Complex Issues of Cardiovascular Diseases

Email: matveeva_vg@mail.ru
Russian Federation, 650002, Kemerovo

References

  1. Athanassiades A., Hamilton G. S., Lala P. K. 1998. Vascular endothelial growth factor stimulates proliferation but not migration or invasiveness in human extravillous trophoblast. Biol. Reprod. V. 59. P. 643. https://doi.org/10.1095/biolreprod59.3.643
  2. Banno K., Yoder M. C. 2018. Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatr. Res. V. 83. P. 283. https://doi.org/10.1038/pr.2017.231
  3. Barclay G. R., Tura O., Samuel K., Hadoke P. W., Mills N. L., Newby D. E., Turner M. L. 2012. Systematic assessment in an animal model of the angiogenic potential of different human cell sources for therapeutic revascularization. Stem Cell Res. Ther. V. 3. P. 23. https://doi.org/10.1186/scrt114
  4. Cai J., Jiang W. G., Ahmed A., Boulton M. 2006. Vascular endothelial growth factor-induced endothelial cell proliferation is regulated by interaction between VEGFR-2, SH-PTP1 and eNOS. Microvasc. Res. V. 71. P. 20. https://doi.org/10.1016/j.mvr.2005.10.004
  5. Cox C. M., D’Agostino S.L., Miller M. K., Heimark R. L., Krieg P. A. 2006. Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev. Biol. V. 296. P. 177. https://doi.org/10.1016/j.ydbio.2006.04.452
  6. Delcombel R., Janssen L., Vassy R., Gammons M., Haddad O., Richard B., Letourneur D., Bates D., Hendricks C., Waltenberger J., Starzec A., Sounni N. E., Noël A., Deroanne C., Lambert C., Colige A., 2013. New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation. Angiogenesis. V. 16. P. 353. https://doi.org/10.1007/s10456-012-9320-y
  7. Dragoni S., Laforenza U., Bonetti E., Lodola F., Bottino C., Berra-Romani R., Carlo Bongio G., Cinelli M. P., Guerra G., Pedrazzoli P., Rosti V., Tanzi F., Moccia F., 2011. Vascular endothelial growth factor stimulates endothelial colony forming cells proliferation and tubulogenesis by inducing oscillations in intracellular Ca2+ concentration. Stem Cells. V. 29. P. 1898. https://doi.org/10.1002/stem.734
  8. Kutikhin A. G., Tupikin A. E., Matveeva V. G., Shishkova D. K., Antonova L. V., Kabilov M. R., Velikanova E. A. 2020. Human peripheral blood-derived endothelial colony-forming cells are highly similar to mature vascular endothelial cells yet demonstrate a transitional transcriptomic signature. Cells. V. 9. P. 876. https://doi.org/10.3390/cells9040876
  9. Liao G., Zheng K., Shorr R., Allan D. S. 2020. Human endothelial colony-forming cells in regenerative therapy: a systematic review of controlled preclinical animal studies. Stem Cells Transl. Med. V. 9. P. 1344. https://doi org/10.1002/sctm.20-0141
  10. Lyons C. J., O’Brien T. 2020. The Functionality of Endothelial-Colony-Forming Cells from Patients with Diabetes Mellitus. Cells. V. 9. Art. ID: 1731. https://doiorg/10.3390/cells9071731
  11. Medina R. J., Barber C. L., Sabatier F., Dignat-George F., Melero-Martin J.M., Khosrotehrani K., Ohneda O., Randi A. M., Chan J. K.Y., Yamaguchi T., Van Hinsbergh V. W.M., Yoder M. C., Stitt A. W. 2017. Endothelial progenitors: a consensus statement on nomenclature. Stem Cells Transl. Med. V. 6. P. 1316. https://doiorg/10.1002/sctm.16-0360
  12. Pearson J. D. 2010. Endothelial progenitor cells — an evolving story. Microvasc. Res. V. 79. P. 162. https://doi.org/10.1016/j.mvr.2009.12.004
  13. Prasain N., Meador J. L., Yoder M. C. 2012. Phenotypic and functional characterization of endothelial colony forming cells derived from human umbilical cord blood. J. Vis. Exp. V. 13. Art. ID: 3872. https://doi.org/10.3791/3872
  14. Tura O., Skinner E. M., Barclay G. R., Samuel K., Gallagher R. C., Brittan M., Hadoke P. W., Newby D. E., Turner M. L., Mills N. L. 2013. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells. V. 31. P. 338. https://doi.org/10.1002/stem.1280
  15. Wang S., Li X., Parra M., Verdin E., Bassel-Duby R., Olson E. N. 2008. Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc. Natl. Acad. Sci. USA. V. 105. P. 7738. https://doi.org/10.1073/pnas.0802857105

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Typical histograms of antigen fluorescence on the cell membrane obtained using flow cytometry (fluorescently labeled antibodies - red curves; isotype control - black curves): a - endothelial antigens CD31, CD146, CD133, CD105; b - CD34; c - hematopoietic linear marker CD45 and CD14; d - myeloid CD90.

Download (224KB)
3. Fig. 2. Typical morphology of ECFC colonies (a), as well as fluorescence of surface (CD31, CD144) and intracellular (VWF, F-actin) markers and extracellular matrix proteins synthesized by cells (fibronectin, type IV collagen) using fluorescently labeled antibodies. Vimentin and α-actin are not detected (b); c — formation of capillary-like structures by ECFC cells on Matrigengel; a, c — phase-contrast microscopy, scale bar — 500 μm; b — confocal microscopy, scale bar — 50 μm.

Download (383KB)
4. Fig. 3. Comparison of ECFC colony growth on EGM2 and EndoBoost Plus media: a – photographs of the growth dynamics of the same colonies on different media over 17 days; b – curves of the increase in the number of cells in the ECFC culture over 53 days (cell counting during passages).

Download (292KB)
5. Fig. 4. Real-time cell culture growth for 72 h on EGM2, EndoBoost and EndoBoost Plus (xCELLigence): a — curve of the dependence of the cell index (CI) on time; b — CI; c — slope of the curve on different media after 72 h of cultivation.

Download (193KB)

Copyright (c) 2025 Russian Academy of Sciences