Physically adsorbed coatings based on chitosan for electrophoretic separation of biologically active substances

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Coatings of the inner walls of a quartz capillary based on cationic high-molecular chitosan with a deacetylation degree of 95% were formed. The dependence of the electroosmotic flow rate on the pH of the background electrolyte was studied, and the stability of the coating under the influence of various solvents was assessed. The results were compared with another cationic coating based on poly(diallyldimethylammonium chloride) (PDADMAC). It was shown that when separating amino acids, catecholamines, and organic acids, the formed coatings based on chitosan are slightly inferior in efficiency to coatings made of PDADMAC, but provide a higher resolution of the studied biologically active analytes. It was found that chitosan on the inner walls of a quartz capillary promotes an increase in enantioselectivity in the separation of β-blocker enantiomers (carvedilol, propranolol, sotalol) in the presence of (2-hydroxypropyl)-β-cyclodextrin in the background electrolyte, as well as non-steroidal anti-inflammatory drugs (ketoprofen and ketorolac) using vancomycin as the second chiral selector.

Full Text

Restricted Access

About the authors

E. A. Kolobova

Institute of Chemistry of the Saint Petersburg State University

Author for correspondence.
Email: ekatderyabina@mail.ru
Russian Federation, 26, Universitetsky Ave., Peterhof, Saint Petersburg, 198504

E. R. Ziangirova

Institute of Chemistry of the Saint Petersburg State University

Email: ekatderyabina@mail.ru
Russian Federation, 26, Universitetsky Ave., Peterhof, Saint Petersburg, 198504

E. V. Solovyova

Institute of Chemistry of the Saint Petersburg State University

Email: ekatderyabina@mail.ru
Russian Federation, 26, Universitetsky Ave., Peterhof, Saint Petersburg, 198504

L. A. Kartsova

Institute of Chemistry of the Saint Petersburg State University

Email: ekatderyabina@mail.ru
Russian Federation, 26, Universitetsky Ave., Peterhof, Saint Petersburg, 198504

References

  1. Карцова Л.А., Макеева Д.В., Бессонова Е.А. Современное состояние метода капиллярного электрофореза // Журн. аналит. химии. 2020. Т. 12. № 75. С. 1059. https://doi.org/10.31857/S0044450220120087 (Kartsova L.A., Makeeva D.V., Bessonova E.A. Current status of capillary electrophoresis // J. Anal. Chem. 2020. V. 12. № 75. P. 1497. https://doi.org/10.1134/S1061934820120084)
  2. Voeten R.L. C., Ventouri I.K., Haselberg R., Somsen G.W. Capillary Electrophoresis: Trends and Recent Advances // Anal. Chem. 2018. V. 90. № 3. P. 1464. https://doi.org/10.1021/acs.analchem.8b00015
  3. Gao Z., Zhong W. Recent (2018–2020) development in capillary electrophoresis // Anal. Bioanal. Chem. 2022. V. 414. № 1. P. 115. https://doi.org/10.1007/s00216-021-03290-y
  4. Hajba L., Guttman A. Recent advances in column coatings for capillary electrophoresis of proteins // TrAC, Trends Anal. Chem. 2017. V. 90. P. 38. https://doi.org/10.1016/j.trac.2017.02.013
  5. Карцова Л.А., Кравченко А.В., Колобова Е.А. Ковалентные покрытия кварцевых капилляров для электрофоретического определения биологически активных аналитов // Журн. аналит. химии. 2019. Т. 74. № 8. С. 563. https://doi.org/10.31857/S0044450221090061 (Kartsova L.A., Kravchenko A.V., Kolobova E.A. Covalent coatings of quartz capillaries for the electrophoretic determination of biologically active analytes // J. Anal. Chem. 2019. V. 74. № 8. P. 729. https://doi.org/10.1134/S1061934819080100)
  6. Znaleziona J., Petr J., Knob R. Dynamic coating agents in CE // Chromatographia. 2008. V. 67. P. 5. https://doi.org/10.1365/s10337-007-0509-y
  7. Robb C.S. Applications of physically adsorbed polymer coatings in capillary electrophoresis // J. Liq. Chromatogr. Relat. Technol. 2007. V. 30. № 5–7. P. 729. https://doi.org/10.1080/10826070701191029
  8. Guo X.F., Guo X.M., Wang H., Zhang H.S. One step physically adsorbed coating of silica capillary with excellent stability for the separation of basic proteins by capillary zone electrophoresis // Talanta. 2015. V. 144. P. 110. https://doi.org/10.1016/j.talanta.2015.05.080
  9. McGettrick J.R., Palmer C.P. Evaluation of poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) cationic polymer capillary coating for capillary electrophoresis and electrokinetic chromatography separations // J. Sep. Sci. 2017. V. 40. № 20. P. 4060. https://doi.org/10.1002/jssc.201700461
  10. Duša F., Witos J., Karjalainen E., Viitala T., Tenhu H., Wiedmer S.K. Novel cationic polyelectrolyte coatings for capillary electrophoresis // Electrophoresis. 2016. V. 37. № 2. P. 363. https://doi.org/10.1002/elps.201500275
  11. Sola L., Chiari M. Tuning capillary surface properties by charged polymeric coatings // J. Chromatogr. A. 2015. V. 1414. P. 173. https://doi.org/10.1016/j.chroma.2015.08.032
  12. Zandkarimi M., Shafaati A., Foroutan S.M., Lucy C.А. Improvement of electrophoretic enantioseparation of amlodipine by polybrene // Iran. J. Pharm. Res. 2012. V. 11. № 1. P. 129.
  13. Pei L., Lucy C.A. Insight into the stability of poly(diallydimethylammoniumchloride) and polybrene poly cationic coatings in capillary electrophoresis // J. Chromatogr. A. 2014. V. 1365. P. 226. https://doi.org/10.1016/j.chroma.2014.09.013
  14. Ullsten S., Zuberovic A., Bergquist J. Adsorbed cationic polymer coatings for enhanced capillary electrophoresis/mass spectrometry of proteins // Methods Mol. Biol. 2008. V. 384. P. 631. https://doi.org/10.1007/978-1-59745-376-9_25
  15. Huhn C., Ramautar R., Wuhrer M., Somsen G.W. Relevance and use of capillary coatings in capillary electrophoresis-mass spectrometry // Anal. Bioanal. Chem. 2010. V. 396. № 1. P. 297. https://doi.org/10.1007/s00216-009-3193-y
  16. Pattky M., Barkovits K., Marcus K., Weiergräber O.H., Huhn C. Statically adsorbed coatings for high separation efficiency and resolution in CE–MS peptide analysis: Strategies and implementation // Methods Mol. Biol. 2016. V. 1483. P. 53. https://doi.org/10.1007/978-1-4939-6403-1_4
  17. Ribeiro J.C. V., Vieira R.S., Melo I.M., Araújo V.M. A., Lima V. Versatility of chitosan-based biomaterials and their use as scaffolds for tissue regeneration // Sci. World J. 2017. V. 2017. Article 8639898. https://doi.org/10.1155/2017/8639898
  18. Sahariah P., Másson M. Antimicrobial chitosan and chitosan derivatives: A review of the structure-activity relationship // Biomacromolecules. 2017. V. 18. № 11. P. 3846. https://doi.org/10.1021/acs.biomac.7b01058
  19. Thevarajah J.J., Van Leeuwen M. P., Cottet H., Castignolles P., Gaborieau M. Determination of the distributions of degrees of acetylation of chitosan // Int. J. Biol. Macromol. 2017. V. 95. P. 40. https://doi.org/10.1016/j.ijbiomac.2016.10.056
  20. Yao Y.J., Li S.F. Y. Capillary zone electrophoresis of basic proteins with chitosan as a capillary modifier // J. Chromatogr. A. 1994. V. 663. № 1. P. 97. https://doi.org/10.1016/0021-9673(94)80500-8
  21. Kumar M.N., Muzzarelli R.A., Muzzarelli C., Sashiwa H., Domb A.J. Chitosan chemistry and pharmaceutical perspectives // Chem. Rev. 2004. V. 104. № 12. Р. 6017. https://doi.org/10.1021/cr030441b
  22. Huang X., Wang Q., Huang B. Preparation and evaluation of stable coating for capillary electrophoresis using coupled chitosan as coated modifier // Talanta. 2006. V. 69. Р. 463. https://doi.org/10.1016/j.talanta.2005.10.015
  23. Jia Y., Cao J., Zhou J., Zhou P. Methyl chitosan coating for glycoform analysis of glycoproteins by capillary electrophoresis // Electrophoresis. 2020. V. 41. № 9. P. 729. https://doi.org/10.1002/elps.201900333
  24. Porpiglia N.M., Tagliaro I., Pellegrini B., Alessi A., Tagliaro F., Russo L. et al. Chitosan derivatives as dynamic coatings for transferrin glycoform separation in capillary electrophoresis // Int. J. Biol. Macromol. 2024. V. 254. Article 127888. https://doi.org/10.1016/j.ijbiomac.2023.127888
  25. Vitali L., Della Betta F., Costa A.C., Vaz F.A., Oliveira M.A., Vistuba J.P. et al. New multilayer coating using quaternary ammonium chitosan and κ-carrageenan in capillary electrophoresis: Application in fast analysis of betaine and methionine // Talanta. 2014. V. 123. P. 45. https://doi.org/10.1016/j.talanta.2014.01.047
  26. Zhou L.P., Chen Y., Hu H., Yu B., Wang G.W., Cong H.L. Novel diazoresin/carboxymethyl chitosan capillary coating for the analysis of proteins by capillary electrophoresis // Ferroelectrics. 2018. V. 529. № 1. P. 24. https://doi.org/10.1080/00150193.2018.1448184
  27. Nishi H., Kuwahara Y. Enantiomer separation by capillary electrophoresis utilizing noncyclic mono-, oligo- and polysaccharides as chiral selectors // J. Biochem. Biophys. Methods. 2001. V. 48. № 2. P. 89. https://doi.org/10.1016/s0165-022x(01)00142-7
  28. Yu R.B., Quirino J.P. Chiral selectors in capillary electrophoresis: Trends during 2017–2018 // Molecules. 2019. V. 24. № 6. Article 1135. https://doi.org/10.3390/molecules24061135
  29. Буданова Н.Ю., Шаповалова Е.Н., Шпигун О.А. Изучение возможности использования хитозана в капиллярном электрофорезе // Вестн. Моск. ун-та. Сер. 2. Химия. 2006. Т. 47. №3. С. 177–181. (Budanova N., Shapovalova E., Shpigun O. Study of possible application of chitosan in capillary electrophoresis // Mosc. Univ. Chem. Bull. 2006. V. 61. P. 20.)
  30. Prokhorova A.F., Kuznetsov M.A., Shapovalova A.N., Staroverov S.M., Shpigun O.A. Enantioseparations of aromatic carboxylic acid by capillary electrophoresis using eremomycin as a chiral selector in a chitosan-modified capillary // Procedia Chem. 2010. V. 2. P. 9. https://doi.org/10.1016/j.proche.2009.12.004
  31. Liu Q., Lin F., Hartwick R.A. Poly(diallyldimethylammonium chloride) as a cationic coating for capillary electrophoresis // J. Chromatogr. Sci. 1997. V. 35. № 3. P. 126. https://doi.org/10.1093/chromsci/35.3.126
  32. Tseng W.L., Chen S.M., Hsu C.Y., Hsieh M.M. On-line concentration and separation of indolamines, catecholamines, and metanephrines in capillary electrophoresis using high concentration of poly(diallyldimethylammonium chloride) // Anal. Chim. Acta. 2008. V. 613. № 1. P. 108. https://doi.org/10.1016/j.aca.2008.02.049
  33. Szabó Z.I., Benkő B.M., Bartalis-Fábián Á., Iványi R., Varga E., Szőcs L., Tóth G. Chiral separation of Apremilast by capillary electrophoresis using succinyl-β-cyclodextrin—reversal of enantiomer elution order by cationic capillary coating // Molecules. 2023. Т. 28. № 8. Article 3310. https://doi.org/10.3390/molecules28083310
  34. Nehmé R., Perrin C., Cottet H., Blanchin M.D., Fabre H. Stability of capillaries coated with highly charged polyelectrolyte monolayers and multilayers under various analytical conditions – Application to protein analysis // J. Chromatogr. A. 2011. V. 1218. № 22. Р. 3537. https://doi.org/10.1016/j.chroma.2011.03.040
  35. Kamande M.W., Kapnissi C.P., Zhu X., Akbay C., Warner I.M. Open-tubular capillary electrochromatography using a polymeric surfactant coating // Electrophoresis. 2003. V. 24. № 6. Р. 945. https://doi.org/10.1002/elps.200390137
  36. Qu Q., Liu D., Mangelings D., Yang C., Hu X. Permanent gold nanoparticle coatings on polyelectrolyte multilayer modified capillaries for open-tubular capillary electrochromatography // J. Chromatogr. A. 2010. V. 1217. № 42. P. 6588. https://doi.org/10.1016/j.chroma.2010.08.057
  37. Neiman B., Grushka E., Lev O. Use of gold nanoparticles to enhance capillary electrophoresis // Anal. Chem. 2001. V. 73. № 21. Р. 5220. https://doi.org/10.1021/ac0104375
  38. Dhellemmes L., Leclercq L., Höchsmann A., Neusüß C., Biron J.P., Roca S., Cottet H. Critical parameters for highly efficient and reproducible polyelectrolyte multilayer coatings for protein separation by capillary electrophoresis // J. Chromatogr. A. 2023. V. 1695. Article 463912. https://doi.org/10.1016/j.chroma.2023.463912
  39. Макеева Д.В., Антипова К.С., Соловьева Е.В., Моргачева В.П., Колобова Е.А., Карцова Л.А. Полислойные покрытия на основе стабилизированных цитратом наночастиц золота и полидиаллилдиметиламмоний хлорида для электрофоретического разделения карбоновых кислот // Журн. аналит. химии. 2023. Т. 78. № 3. С. 241. https://doi.org/10.31857/S0044450223030088 (Makeeva D.V., Antipova K.S., Solovyeva E.V., Morgacheva V.P., Kolobova E.A, Kartsova L.A. Multilayer coatings based on citrate-stabilized gold nanoparticles and polydiallyldimethylammonium chloride for the electrophoretic separation of carboxylic acids // J. Anal. Сhem. 2023. V. 78. № 3. P. 241. https://doi.org/1010.1134/S1061934823030085)
  40. Моргачева В.П., Макеева Д.В., Соловьева Е.В., Колобова Е.А., Карцова Л.А. Новые подходы к формированию покрытий на основе альбумина и наночастиц золота для хирального разделения методом капиллярного электрофореза // Аналитика и контроль. 2023. Т. 27. № 1. С. 21. https://doi.org/1010.15826/analitika.2023.27.1.002
  41. Makeeva D., Morgacheva V., Kolobova E., Solovyeva E., Kartsova L. Multilayer coatings based on gold nanoparticles and polymers with bovine serum albumin as a functional layer for the chiral separation in capillary electrochromatography // J. Sep. Sci. 2024. V. 47. № 2. Article e2300864. https://doi.org/10.1002/jssc.202300864
  42. Pak C., Marriott P.J., Carpenter P.D., Amiet R.G. Enantiomeric separation of propranolol and selected metabolites by using capillary electrophoresis with hydroxypropyl-beta-cyclodextrin as chiral selector // J. Chromatogr. 1998. V. 793. P. 357. https://doi.org/10.1016/s0021-9673(97)00919-9
  43. Hancu G., Cârje A., Iuga I., Fülöp I., Szabó Z.I. Cyclodextrine screening for the chiral separation of carvedilol by capillary electrophoresis // Iran. J. Pharm. Res. 2015. V. 14. P. 425.
  44. Колобова Е.А., Карцова Л.А., Алопина Е.В., Смирнова Н.А. Разделение энантиомеров тирозина, триптофана и β-блокаторов методом капиллярного электрофореза с участием аминокислотной ионной жидкости 1-бутил-3-метилимидазолий L-пролинат [C4MIM][L-PRO] в качестве хирального селектора // Аналитика и контроль. 2018. Т. 22. № 1. С. 51. https://doi.org/1010.15826/analitika.2018.22.1.004
  45. Podar A., Oprean R., Suciu Ş. Review – Recent enantiomer separation strategies of nonsteroidal anti-inflammatory drugs (NSAIDs) by capillary electrophoresis // Farmacia. 2016. V. 64. № 2. P. 159.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Structure of chitin/chitosan. n is the number of repeating units of glucosamine, m is the number of repeating units of acetylglucosamine, n + m is the degree of polymerisation, n / (m + n) is the degree of deacetylation. When n exceeds 50% of the total number of links, the polymer is called chitosan [17].

Download (63KB)
3. Fig. 1. Dependences of electrophoretic mobility of EOP (µEOP) on the pH of the background electrolyte: 1 - uncoated capillary; 2 - capillary modified with PDADMAH [39]; 3 - chitosan-coated capillary.

Download (61KB)
4. Fig. 2. SEM images of a cross section of a capillary coated with (a), (b) chitosan-based and (c) PDADMAH obtained at different magnifications with a scale bar: (a) 2 μm; (b), (c) 200 nm. Instrument: Zeiss Merlin, secondary electron image.

Download (118KB)
5. Fig. 3. Electrophoregrams of a model mixture of organic acids: (a) capillary modified with PDADMAH; (b) capillary modified with chitosan. Background electrolyte: 10 mM benzoic acid, 1 mM EDTA, 10 mM DEA. Model mixture of carboxylic acids 25 µg/ml: 1 - oxalic acid, 2 - formic acid, 3 - tartaric acid, 4 - citric acid, 5 - malic acid, 6 - lactic acid, 7 - succinic acid, 8 - acetic acid, 9 - propionic acid, 10 - butyric acid.

Download (67KB)
6. Fig. 4. Electrophoregrams of a model mixture of amino acids and catecholamines (50 µg/ml): (a) unmodified capillary; (b) capillary modified with chitosan; (c) capillary modified with PDADMAH. Background electrolyte: 10 mM phosphate buffer solution with pH 2.0. Analytes: 1 - DOPA, 2 - Tyr, 3 - Phe, 4 - Trp, 5 - E, 6 - NMN, 7 - NE, 8 - 3-MT, 9 - DA.

Download (68KB)
7. Fig. 5. Electrophoregrams of the model mixture of β-blockers on different capillaries: (a)-(c) capillary modified with chitosan; (d), (e) unmodified capillary; (f) capillary coated with PDADMAH. Background electrolyte: (a), (d) 25 mM phosphate buffer solution (PBS) with pH 2.0; (b) 25 mM PBS with pH 2.0, 0.01 wt% chitosan; (c), (d), (e), (f) 25 mM PBS with pH 2.0, 5 mM GP-β-CD. Analyses: 1 - sotalol, 2 - propranolol, 3 - carvedilol.

Download (144KB)
8. Fig. 6. Electrophoregrams of a model mixture of non-steroidal anti-inflammatory drugs (25 µg/ml). Droplet-105M; capillary modified with chitosan. Background electrolyte: (a) 25 mM phosphate buffer solution (PBS) with pH 6.4; (b) 25 mM PBS with pH 6.4, 0.01 wt% chitosan; (c) 25 mM PBS with pH 6.4, 0.5 mM GP-β-CD; (d) 25 mM PBS with pH 6. 4, 0.5 mM β-CD; (e) 25 mM FBI with pH 4.2, 2.5 mM vancomycin, 10 vol % methanol; (f) unmodified capillary, 25 mM FBI with pH 4.2, 2.5 mM vancomycin, 10 vol % methanol. Analyses: 1 - ketorolac, 2 - ketoprofen, 3 - ibuprofen.

Download (114KB)
9. Fig. 7. Dependences of resolution (Rs) of enantiomers (1) of ketorolac and (2) of ketoprofen on the composition of the background electrolyte. Conditions: capillary modified with chitosan; background electrolyte: (a) 10-25 mM FBR with pH 4.2, 1 mM vancomycin; (b) 25 mM FBR with pH 4.2, 1 mM vancomycin, 0-20 vol. % methanol; (c) 25 mM FBR with pH 4.2, 0-5 mM vancomycin, 10 vol. % methanol. Analyses: 1 - ketorolac, 2 - ketoprofen.

Download (110KB)

Copyright (c) 2025 Russian Academy of Sciences