Application of sulphonated styrene and divinylbenzene copolymers with various degree of crosslinking for ion exclusion chromatography

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The chromatographic retention of neutral polar compounds (alcohols, ketones, carboxylic acids, carbohydrates, and sweeteners) and compounds in ionized form (mono- and dibasic organic acids) on cation exchange columns filled with sulfonated poly(styrene-divinylbenzene) with a crosslinking degree of 8 % (Nautilus-IE) and 10 % (Sevko AA) is studied in a variant of ion exclusion chromatography. Using 5 mM sulfuric acid, the retention parameters of the compounds are determined and new patterns are obtained that clarify the mechanism of retention of organic acids in the ion-exclusion chromatography variant. It is found that the retention of all the studied compounds (logk’) is directly proportional to the hydrophobicity values logPexp). In this case, the electrostatic repulsion of organic acids from the sulfo groups of the cation exchanger shifts the logk’–logPexp dependences by a fixed value proportional to the number of carboxyl groups. The possibility of using the Sevko AA column not only for amino acid analysis, but also for ion exclusion chromatographic determination of organic acids and alcohols in complex samples with simultaneous spectrophotometric and refractometric detection is shown.

Full Text

Restricted Access

About the authors

A. Yu. Laptev

Lomonosov Moscow State University

Author for correspondence.
Email: p.nesterenko@phys.chem.msu.ru
Russian Federation, 1, Leninskie Gory, Moscow, 119991

N. B. Rozhmanova

Lomonosov Moscow State University

Email: p.nesterenko@phys.chem.msu.ru
Russian Federation, 1, Leninskie Gory, Moscow, 119991

A. V. Sevko

Lomonosov Moscow State University

Email: p.nesterenko@phys.chem.msu.ru
Russian Federation, 1, Leninskie Gory, Moscow, 119991

References

  1. Haddad P.R. Ion chromatography : Principles and applications // J. Chromatogr. Libr. 1990. V. 46. P. 195.
  2. Mori M., Ch. 8. Ion-exclusion chromatography / Ion-Exchange Chromatography and Related Techniques / Eds. P. N. Nesterenko, C. F. Poole, Y. Sun. Elsevier, 2024. P. 163.
  3. Ng K.L., Dicinoski G.W., Haddad P.R. Effects of stationary phase cross-linking and ion-exchange capacity on the retention of carboxylic acids in ion-exclusion chromatography using sulfonated resins // Anal. Sci. 2001. V. 17. P. 1117.
  4. Медведев A.Л., Иванов А.А., Шпигун О.А. Ионоэксклюзионная хроматография алифатических карбоновых кислот // Журн. анал. химии. 1997. Т. 52. № 1. С. 47. (Medvedev A.L., Ivanov A.A., Shpigun O.A. Ion-exclusion chromatography of aliphatic carboxylic acids // J. Anal. Chem. 1997. V. 52. P. 39.)
  5. Papp E., Keresztes P. Retention behaviour of mono- and dicarboxylic acids, carbohydrates and alcohols in ion-exclusion chromatography. // J. Chromatogr. 1990. V. 506. P. 157.
  6. Tanaka K., Chikara H., Hu W., Hasebe K. Separation of carboxylic acids on a weakly acidic cation-exchange resin by ion-exclusion chromatography // J. Chromatogr. A. 1999. V. 850. P. 187.
  7. Mori M., Hironaga T., Kajiwara H., Nakatani N., Kozaki D., Itabashi H., Tanaka K. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples // Anal. Sci. 2011. V. 27. P. 505.
  8. Нестеpенко П.Н., Кебец П.А., Волгин Ю.В. Применение сульфокатионообменника на основе сверхсшитого полистирола для разделения органических кислот // Журн. аналит. химии. 2001. Т. 56. С. 801. (Nesterenko P.N., Kebets P.A., Volgin Y.V. Use of sulfonated cation-exchange resin based on hypercrosslinked polystyrene for the separation of organic acids // J. Anal. Chem. 2001. V. 56. P. 715.)
  9. Нестеpенко П.Н., Кебец П.А. Oпределение молочной кислоты методом ионоэксклюзионной хроматографии на сульфированном сверхсшитом полистиролe // Вестн. Моск. ун-та. Сер. 2. Химия. 2002. Т. 43. № 1. С. 34.
  10. Nesterenko P.N. Ch. 3. Stationary phases for ion separations / Ion-Exchange Chromatography and Related Techniques / Eds. P.N. Nesterenko, C.F. Poole, Y. Sun. Elsevier, 2024. P. 49.
  11. Hemstrom P., Irgum K. Hydrophilic interaction chromatography // J. Sep. Sci. 2006. V. 29. P. 1784.
  12. Tanaka K., Haddad P.R. Ion exclusion chromatography: Liquid chromatography / Encyclopedia of Separation Science / Ed. I.D. Wilson. Oxford: Academic Press, 2000. P. 3193.
  13. Нестеpенко П.Н., Савельев В.И. Высокоэффективная жидкостная хроматография смеси моно-, ди- и трисахаридов с использованием в качестве подвижной фазы смеси ацетон–этилацетат–вода // Журн. аналит. химии. 1990. Т. 45. С. 1134. (Nesterenko P.N., Savel’ev V.I. High-performance liquid-chromatography of a mixture of monosaccharides, disaccharidies, and trisaccharides using an acetone–ethyl-acetate–water mixture as the mobile phase // J. Anal. Chem. USS R. 1990. V. 45. P. 819.)
  14. Hutchinson J.P., Remenyi T., Nesterenko P., Farrell W., Groeber E., Szucs R. et al. Investigation of polar organic solvents compatible with Corona Charged Aerosol Detection and their use for the determination of sugars by hydrophilic interaction liquid chromatography // Anal. Chim. Acta. 2012. V. 750. P. 199.
  15. Tanaka K., Mori M. Milestone studies on ion-exclusion chromatography of ionic and nonionic substances utilizing multifunctional separation mechanism of ion-exchange resins // Anal. Sci. 2021. V. 37. P. 93.
  16. Mansour F.R., Kirkpatrick C.L., Danielson N.D. Ion exclusion chromatography of aromatic acids // J. Chromatogr. Sci. 2013. V. 51. P. 655.
  17. Rainer M., Huck C.W., Huber C.G., Bonn G.K., Ch. 3. HPLC of carbohydrates with cation-exchange silica and resin-based stationary phases / Carbohydrate Analysis by Modern Liquid Phase Separation Techniques / Ed. El Rassi Z. Amsterdam: Elsevier, 2021. P. 125.
  18. Программное обеспечения и база данных US EPA, KOWWIN доступна по ссылке http://www.Epa.Gov/oppt/exposure/pubs/episuite.htm (дата обращения: 30.09.2024).
  19. NIST critically selected stability constants of metal complexes database. Version 5.0. 1998.
  20. Jenner M.R., Smithson A. Physicochemical properties of the sweetener sucralose // J. Food Sci. 1989. V. 54. P. 1646.
  21. Nesterenko P.N., Nesterenko E.P. Hydrophobicity of polymer based anion-exchange columns for ion chromatography // Heliyon. 2021. V. 7. P. Article e07290.
  22. Harlow G.A., Morman D.H. Automatic ion exclusion-partition chromatography of acids // Anal. Chem. 1964. V. 36. P. 2438.
  23. Doyon G., Gaudreau G., St-Gelais D., Beaulieu Y., Randall C.J. Simultaneous HPLC determination of organic acids, sugars and alcohols // Can. Inst. Food Sci. Technol. J. 1991. V. 24. P. 87.
  24. Pecina R., Bonn G., Burtscher E., Bobleter O. High-performance liquid chromatographic elution behaviour of alcohols, aldehydes, ketones, organic acids and carbohydrates on a strong cation-exchange stationary phase // J. Chromatogr. A. 1984. V. 287. P. 245.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Microphotographs of Nautilus IE cation exchanger particles.

Download (273KB)
3. Fig. 2. Dependence of retention of homologues of n-alkanols (1, 2), diols (3, 5) and n-alkano acids (4, 6) on the number of carbon atoms on Nautilus IE (1, 3, 4) and Sevco AA (2, 5, 6) columns.

Download (26KB)
4. Fig. 3. Dependence of retention (logk') of polar organic compounds on the Nautilus IE column on hydrophobicity (logPexp). 1 - neutral compounds ((●) - monoatomic alcohols, (■) - ketones, (◆) - polyatomic alcohols, (▽) - glucose), 2 - mono-basic acids (⬢), and 3 - poly-basic acids (△).

Download (36KB)
5. Fig. 4. Chromatogram of separation of a model mixture of one-atomic alcohols with a concentration of 0.5 mg/ml: 1 - methanol, 2 - ethanol, 3 - isopropanol, 4 - tert-butanol, 5 - n-propanol, 6 - tert-butanol, 7 - isobutanol, 8 - n-butanol, 9 - isopentanol, 10 - n-pentanol. Refractometric detector. Columns: 200 × 4.6 mm.

Download (59KB)
6. Fig. 5. Chromatogram of the separation of a model mixture of polyatomic alcohols with a concentration of 1.2 mg/ml. 1 - glycerol, 2 - ethylene glycol, 3 - propanediol-1,3, 4 - butanediol-1,3, 5 - butanediol-1,4. Refractometric detector. Columns: 200 × 4.6 mm.

Download (35KB)
7. Fig. 6. Chromatogram of separation of a model mixture of ketones with a concentration of 0.5 mg/ml. 1 - acetone, 2 - methyl ethyl ketone, 3 - diethyl ketone, 4 - methylisobutyl ketone, 5 - methyl butyl ketone. Refractometric detector. Columns: 200 × 4.6 mm.

Download (37KB)
8. Fig. 7. Chromatogram of the separation of a model mixture of acids with a concentration of 0.1 mg/ml: 1 - oxalic acid, 2 - citric acid, 3 - tartaric acid, 4 - glyoxylic acid, 5 - glycolic acid, 6 - lactic acid, 7 - formic acid, 8 - acetic acid, 9 - propionic acid, 10 - butyric acid. Spectrophotometric detector, 210 nm.

Download (44KB)
9. Fig. 8. Chromatogram of separation of a model mixture of organic acids, carbohydrates and alcohols with a concentration of 0.46 mg/ml. 1 - oxalic acid, 2 - citric acid, 3 - tartaric acid, 4 - glucose, 5 - fructose, 6 - arabinose, 7 - succinic acid, 8 - lactic acid, 9 - glycerol, 10 - acetic acid, 11 - propionic acid, 12 - methanol, 13 - ethanol, 14 - isopropanol, 15 - n-propanol, 16 - butanol, 17 - n-butanol, 18 - isopentanol, 19 - n-pentanol. Refractometric detector. 150 × 4.6 and 200 × 4.6 mm Nautilus IE columns connected in series.

Download (48KB)
10. Fig. 9. Chromatograms of low alcoholic beverages. a - UV detection (210 nm), b - refractometric detection. Identified components: 1 - oxalic acid, 2 - citric acid, 3 - malic acid, 4 - succinic acid, 5 - lactic acid, 6 - fumaric acid, 7 - acetic acid, 8 - propionic acid, 9 - glycerol, 10 - ethanol. Sequentially connected Nautilus IE columns of 150 × 4.6 and 200 × 4.6 mm.

Download (65KB)

Copyright (c) 2025 Russian Academy of Sciences