Main Strategies of the Sample Preparation of Biological Samples Containing Nanoparticles for Their Subsequent Analysis by Single Particle Inductively Coupled Plasma Mass Spectrometry: A Mini-Review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The characterization of highly dispersed materials and nanoparticles (NPs), as well as the investigation of their transformations in biological systems, constitute a critical aspect of research aimed at assessing the potential for active NP applications in biomedicine and pharmacology. A promising method for characterizing nanoparticles involves single particle inductively coupled plasma mass spectrometry (SP ICP MS). This technique enables the determination of nanoparticle masses at the femtogram level and gives information on their distribution by the analyte form (soluble ionic or nanoscale), size, and quantity within the analyzed sample. Sample preparation for an SP ICP MS analysis is based on the quantitative extraction of nanoparticles from a biological sample while preserving their characteristics. Liquid samples for analysis are prepared by dilutions, involving filtration, centrifugation, sedimentation, and various fractionation and separation techniques. Enzymatic and alkaline hydrolysis have been applied to the decomposition of biological tissues. The discussion addresses the capabilities and limitations of primary sample preparation methods, using biomaterials containing gold and silver nanoparticles as examples. Particular attention is given to techniques that do not alter the analyte, such as dilution and filtration. A possibility of analyzing iron oxide-based materials, relevant to biomedical research, using SP ICP MS is noted, along with the challenges associated with such analyses. The combination of laser ablation (as a sampling method) with SP ICP MS is shown to be a promising approach to studying the spatial distribution of nanoparticles in biological systems.

Full Text

Restricted Access

About the authors

O. N. Grebneva-Balyuk

Vernadsky Institute of Geochemistry and Analytical Chemistry Russian Academy of Sciences

Author for correspondence.
Email: grebneva@geokhi.ru
Russian Federation, Moscow, 119991

M. S. Kiseleva

Vernadsky Institute of Geochemistry and Analytical Chemistry Russian Academy of Sciences

Email: grebneva@geokhi.ru
Russian Federation, Moscow, 119991

I. V. Kubrakova

Vernadsky Institute of Geochemistry and Analytical Chemistry Russian Academy of Sciences

Email: grebneva@geokhi.ru
Russian Federation, Moscow, 119991

References

  1. Zhang J., Guo W., Wang Q., Li, Z., Li S. The effect and potential mechanism of environmental transformation of metal nanoparticles on their toxity in organisms // Environ. Sci.: Nano. 2018. V. 5. P. 2482. https://doi.org/10.1039/C8EN00688A
  2. Wang X., Xie H., Wang P., Yin H. Nanoparticles in plants: Uptake, transport and physiological activity in leaf and root // Materials 2023. V. 16. P. 3097. https://doi.org/10.3390/ma16083097
  3. Reidy B., Haase A., Luch A., Dawson K.A., Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications // Materials. 2013. V. 6. P. 2295. https://doi.org/10.3390/ma6062295
  4. Zhang W., Xiao B., Fang T. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity // Chemosphere. 2018. V. 191. P. 324. https://doi.org/10.1016/j.chemosphere.2017.10.016
  5. Sabaghian H. Silver nanoparticles as antiviral and antibacterial agents: A comprehensive review of synthesis methods and therapeutic application // Chem. Select. 2024. V. 9. Article e20230494. https://doi.org/10.1002/slct.202304941
  6. Nanoparticles for Drug Delivery / Eds. K.S. Joshy, Th. Sabu, K.Th. Vijay. Springer Nature Singapore Pte Ltd., 2021. 207 p.
  7. Hou Z., Xu J., Zhu J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: Synthesis progress and biomedical applications // Nanoscale. 2020. V. 12. P. 14957. https://doi.org/10.1039/D0NR03346D
  8. Nochehdehi A.R., Thomas S., Revaprasadu N., Grohens Y., Kalarikkal, N. Biomedical applications of iron-and cobalt-based biomagnetic alloy nanoparticles // Nanosci. Med. 2020. V. 1. P. 333. https://doi.org/10.1007/978-3-030-29207-2_10
  9. Королев Д.В. Разработка препаратов для тераностики и направленной доставки кардиопротективных субстанций на основе кремнеземных и магнитных наночастиц Дис. … док. хим. наук. Санкт-Петербург: Национальный медицинский исследовательский центр им. В.А. Алмазова Министерства здравоохранения РФ, 2019. 384 с.
  10. Sandler S.E., Fellows B., Mefford O.T. Best practices for characterization of magnetic nanoparticles for biomedical applications // Anal. Chem. 2019. V. 91. P. 14159. https://doi.org/10.1021/acs.analchem.9b03518
  11. Crowder J.M., Bates N., Roberts J., Torres A.S., Bonitatibus Jr. P.J. Determination of tantalum from tantalum oxide nanoparticle X-ray/CT contrast agents in rat tissues and bodily fluids by ICP-OES // J. Anal. At. Spectrom. 2016. V. 31. Р. 1311. https://doi.org/10.1039/C5JA00446B
  12. Лисичкин Г.В., Оленин А.Ю., Кулакова И.И. Химия поверхности неорганических наночастиц. М.: Техносфера, 2021. 379 с.
  13. Lead J.R., Batley G.E., Alvarez P.J.J., Croteau M.-N., Handy R.D., McLaughlin M.J. et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects – An updated review // Environ. Toxicol. Chem. 2018. V. 37. P. 2029. https://doi.org/10.1002/etc.4147
  14. Auría-Soro C., Nesma T., Juanes-Velasco P., Landeira-Viñuela A., Fidalgo-Gomez H., Acebes-Fernandez V. et al. Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine // Nanomaterials. 2019. V. 9. P. 1365. https://doi.org/10.3390/nano9101365
  15. Wu K., Su D., Liu J., Saha R., Wang J.-P. Magnetic nanoparticles in nanomedicine: A review of recent advances// Nanotechnology. 2019. V. 30. Article 502003. https://doi.org/10.1088/1361-6528/ab4241
  16. Srivastava P., Sharma P. K., Muheem A., Warsi M. H. Magnetic nanoparticles: a review on stratagems of fabrication and its biomedical applications // Recent Pat. Drug Deliv. Formul. 2017. V. 11. P. 101. https://doi.org/10.2174/1872211311666170328150747
  17. Qiao R., Fu C., Forgham H., Javed I., Huang X., Zhu J. et al. Magnetic iron oxide nanoparticles for brain imaging and drug delivery // Adv. Drug Deliv. Rev. 2023. V. 197. Article 114822. https://doi.org/10.1016/j.addr.2023.114822
  18. Zelepukin I.V., Yaremenko A.V., Ivanov I.N., Yuryev M.V., Cherkasov V.R., Deyev S.M. et al. Long-term fate of magnetic particles in mice: A comprehensive study // ACS Nano. 2021. V. 15. P. 11341. https://doi.org/10.1021/acsnano.1c00687
  19. Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: An update // Bioeng. Transl. Med. 2019. V. 4. № 3. Article e10143. https://doi.org/10.1002/btm2.10143
  20. Szwed M., Marczak A. Application of nanoparticles for magnetic hyperthermia for cancer treatment-the current state of knowledge // Cancers (Basel). 2024. V. 16. P. 1156. https://doi.org/10.3390/cancers16061156
  21. Shabatina T.I., Vernaya O.I., Shimanovskiy N.L., Melnikov M.Y. Metal and metal oxides nanoparticles and nanosystems in anticancer and antiviral theragnostic agents // Pharmaceutics. 2023. V. 15. № 4. P. 1181. https://doi.org/10.3390/pharmaceutics15041181
  22. Nigam S., Chandra S., Newgreen D.F., Bahadur D., Chen Q. Poly (ethylene glycol)-modified PAMAMFe3O4-doxorubicin triads with the potential for improved therapeutic efficacy: generation-dependent increased drug loading and retention at neutral pH and increased release at acidic pH // Langmuir. 2014. V. 30. P. 1004. https://doi.org/10.1021/la404246h
  23. Farzin A., Etesami S.A., Quint J., Memic A., Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis // Adv. Health. Mater. 2020. V. 9. Article e1901058. https://doi.org/10.1002/adhm.201901058
  24. Laborda F., Bolea E., Jiménez-Lamana J. Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples // Trends Environ Anal Chem. 2016. V. 9. P. 15. https://doi.org/10.1016/j.teac.2016.02.001
  25. Bolea E., Jimenez M.S., Perez-Arantegui J., Vidal J.C., Bakir M., Ben-Jeddou K. et al. Analytical applications of single particle inductively coupled plasma mass spectrometry: a comprehensive and critical review // Anal. Methods. 2021. V. 13. P. 2742. https://doi.org/10.1039/D1AY00761K
  26. Pace H.E., Rogers N.J., Jarolimek C., Coleman V.A., Higgins C.P., Ranville J.F. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry // Anal. Chem. 2011. V. 83. P. 9361. https://doi.org/10.1021/ac201952t
  27. la Calle I.De., Menta M., Séby F. Current trends and challenges in sample preparation for metallic nanoparticles analysis in daily products and environmental samples: A review // Spectrochim. Acta B. 2016. V. 125. P. 66. https://doi.org/10.1016/j.sab.2016.09.007
  28. Galazzi R.M., Chacón-Madrid K., Freitas D.C., da Costa L.F., Arruda M.A.Z. Inductively coupled plasma mass spectrometry based platforms for studies involving nanoparticle effects in biological samples // Rapid Commun. Mass Spectrom. 2020. V. 34 (S3). Article e8726. https://doi.org/10.1002/rcm.8726
  29. Laycock A., Clark N.J., Clough R., Smith R., Handy R.D. Determination of metallic nanoparticles in biological samples by single particle ICP-MS: A systematic review from sample collection to analysis // Environ. Sci. Nano. 2022. V. 9. P. 420. https://doi.org/10.1039/D1EN00680K
  30. Labuda J., Barek J., Gajdosechova Z., Jacob S., Johnston L., Krystek P. et al. Analytical chemistry of engineered nanomaterials: Part 2. Analysis in complex samples (IUPAC Technical Report) // Pure Appl. Chem. 2023. V. 95. № 11. P. 1159. https://doi.org/10.1515/pac-2022-0401
  31. Blaimer D., Leopold K. Analytical methods for identification, characterization, and quantification of metal-containing nanoparticles in biological and biomedical samples, food and personal care products// TrAC, Trends in Anal. Chem. 2024. V. 181B. Article 118031. https://doi.org/10.1016/j.trac.2024.118031
  32. Abbas Q., Zia-ur-Rehman M., Ullah H., Munir M.A.M., Ali M.U., Ali A. et al. Recent advances in the detection and quantification of manufactured nanoparticles (MNPs) in complex environmental and biological matrices // J. Clean. Prod. 2024. V. 471. Article 143454. https://doi.org/10.1016/j.jclepro.2024.143454
  33. Mozhayeva D., Engelhard C. A critical review of single particle inductively coupled plasma mass spectrometry – A step towards an ideal method for nanomaterial characterization // J. Anal. At. Spectrom. 2020. V. 35. P. 1740. https://doi.org/10.1039/C9JA00206E
  34. Кубракова И.В., Гребнева-Балюк О.Н., Пряжников Д.В., Киселева М.С., Ефанова О.О. Атомно-спектральные методы в исследовании свойств и поведения наноразмерных магнитных материалов в биологических системах // Журн. аналит. химии. 2023. Т. 78. № 10. С. 897. https://doi.org/10.31857/S0044450223100122 (Kubrakova I.V., Grebneva-Balyuk O.N., Pryazhnikov D.V., Kiseleva M.S., Efanova O.O. Methods of atomic spectroscopy in studying properties and the behavior of nanoscale magnetic materials in biological system // J. Anal. Chem. 2023. V. 78. № 10. P. 1306. https://doi.org/10.1134/S106193482310012X)
  35. Taurozzi J.S., Hackley V.A., Wiesner M.R. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment – issues and recommendations // Nanotoxicology. 2011. V. 5. № 4. P. 711. https://doi.org/10.3109/17435390.2010.528846
  36. Nwoko K.C., Raab A., Cheyne L., Dawson D., Krupp E., Feldmann J. Matrix-dependent size modifications of iron oxide nanoparticles (Ferumoxytol) spiked into rat blood cells and plasma: Characterisation with TEM, AF4-UV-MALS-ICP-MS/MS and spICP-MS // J. Chromatogr. B. 2019. V. 1124. P. 356. https://doi.org/10.1016/j.jchromb.2019.06.029
  37. Sun Y., Liu N., Wang Y., Yin Y., Qu G., Shi J. et al. Monitoring AuNP dynamics in the blood of a single mouse using single particle inductively coupled plasma mass spectrometry with an ultralow-volume high-efficiency introduction system // Anal. Chem. 2020. V. 92. P. 14872. https://doi.org/10.1021/acs.analchem.0c02285
  38. Bocca B., Battistini B., Petrucci F. Silver and gold nanoparticles characterization by SP-ICP-MS and AF4-FFFMALS-UV-ICP-MS in human samples used for biomonitoring // Talanta. 2020. V. 220. Article 121404. https://doi.org/10.1016/j.talanta.2020.121404
  39. Salou S., Lariviere D., Cirtiu C.M., Fleury N. Quantification of titanium dioxide nanoparticles in human urine by single-particle ICP-MS // Anal. Bioanal. Chem. 2021. V. 413. P. 171. https://doi.org/10.1007/s00216-020-02989-8
  40. Badalova K., Herbello-Hermelo P., Bermejo-Barrera P., Moreda-Pineiro A. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine // J. Trace Elem. Med. Biol. 2019. V. 54. P. 55. https://doi.org/10.1016/j.jtemb.2019.04.003
  41. Cirtiu C.-M., Fleury N., Stephan C., Shelton C. Assessing the Fate of Nanoparticles in Biological Fluids Using SP-ICP-MS. PerkinElmer Application note, 2015.
  42. van der Zande M., Vandebriel R.J., van Doren E., Kramer E., Herrera Rivera Z., Serrano-Rojero C.S. et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure // ACS Nano. 2012. V. 6. P. 7427. https://doi.org/10.1021/nn302649p
  43. Walczak A.P., Fokkink R., Peters R., Tromp P., Herrera Rivera Z.E., Rietjens I.M. et al. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model // Nanotoxicology. 2012. V. 7. P. 1198. https://doi.org/10.3109/17435390.2012.726382
  44. He X., Zhang H., Shi H., Liu W., Sahle-Demessie E. Fates of Au, Ag, ZnO, and CeO2 nanoparticles in simulated gastric fluid studied using single-particle-inductively coupled plasma-mass spectrometry // J. Am. Soc. Mass Spectrom. 2020. V. 31. P. 2180. https://doi.org/10.1021/jasms.0c00278
  45. Huang Y., Tsz-Shan Lum J., Sze-Yin Leung K. Single particle ICP-MS combined with internal standardization for accurate characterization of polydisperse nanoparticles in complex matrices // J. Anal. At. Spectrom. 2020. V. 35. P. 2148. https://doi.org/10.1039/D0JA00180E
  46. Cabre M., Fernandez G., Gonzalez E., Abella J., Verdaguer A. Single particle ICP-MS: A tool for the characterization of gold nanoparticles in nanotheranostics applications // J. Anal. At. Spectrom. 2024. V. 39. P. 2508. https://doi.org/10.1039/D4JA00141A
  47. Cirtiu C.-M., Fleury N., Stephan Ch. Assessing the Fate of Nanoparticles in Biological Fluids Using SP-ICP-MS in Single Particle ICP-MS Compendium. Perkin Elmer, 2016. P. 80.
  48. Серегина И.Ф., Осипов К., Большов М.А., Филатова Д.Г., Ланская С.Ю. Матричные помехи при определении элементов в биологических образцах методом масс-спектрометрии с индуктивно связанной плазмой и пути их устранения // Журн. аналит. химии. 2019. Т. 74. № 2. С. 136. https://doi.org/10.1134/S0044450219020117 (Seregina I.F., Osipov K., Bol’shov M.A., Filatova D.G., Lanskaya S.Yu. Matrix interference in the determination of elements in biological samples by inductively coupled plasma–mass spectrometry and methods for its elimination // J. Anal. Chem. 2019. V. 74. № 2. P. 182. https://doi.org/10.1134/S1061934819020114)
  49. Суриков В.Т., Пупышев А.А. Введение образцов в индуктивно связанную плазму для спектрометрического анализа // Аналитика и контроль. 2006. Т. 10. № 2. С. 112.
  50. Abad-Alvaro I., Pena-Vazquez E., Bolea E., Bermejo-Barera P., Castillo J.R., Laborda F. Evaluation of number concentration quantification by single particle inductively coupled plasma mass spectrometry: microsecond vs. millisecond dwell times // Anal. Bioanal. Chem. 2016. V. 408. P. 5089. https://doi.org/10.1007/s00216-016-9515-y
  51. Lee A., Elam J.W., Darling S.B. Membrane materials for water purification: Design, development, and application // Environ. Sci.: Water Res. Technol. 2016. V. 2. P. 17. https://doi.org/10.1039/C5EW00159E
  52. Boussu K., Belpaire A., Volodin A., van Haesendonck C., van der Meeren P., Vandecasteele C. et al. Influence of membrane and colloid characteristics on fouling of nanofiltration membranes // J. Membr. Sci. 2007. V. 289. P. 220. https://doi.org/10.1016/j.memsci.2006.12.001
  53. Singh G., Song L. Experimental correlations of pH and ionic strength effects on the colloidal fouling potential of silica nanoparticles in cross flow ultrafiltration // J. Membr. Sci. 2007. V. 303. P. 112. https://doi.org/10.1016/j.memsci.2007.06.072
  54. Bacchin P., Aimar P., Sanchez V. Influence of surface interaction on transfer during colloidal ultrafiltration // J. Membr. Sci. 1996. V. 115. P. 49. https://doi.org/10.1016/0376-7388(95)00279-0
  55. Reed R.B., Higgins C.P., Westerhoff P., Tadjiki S., Ranville J.F. Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry // J. Anal. At. Spectrom. 2012. V. 27. P. 1093. https://doi.org/10.1039/C2JA30061C
  56. da Silva B.F., Pérez S., Gardinalli P., Singhal R.K., Mozeto A.A., Barceló D. Analytical chemistry of metallic nanoparticles in natural environments // TrAC, Trends Anal. Chem. 2011. V. 30. P. 528. https://doi.org/10.1016/j.trac.2011.01.008
  57. Hassellöv M., Kaegi R. Analysis and characterization of manufactured nanoparticles in aquatic environments / Environmental and Human Health Impacts of Nanotechnology / Eds. J.R. Lead, E. Smith. Wiley-Blackwell, 2009. P.211.
  58. Yin T., Walker H.W., Chen D., Yang Q. Influence of pH and ionic strength on the deposition of silver nanoparticles on microfiltration membranes // J. Membr. Sci. 2014. V. 449. P. 9. https://doi.org/10.1016/j.memsci.2013.08.020
  59. Marassi V., Casolari S., Roda B., Zattoni A., Reschiglian P., Panzavolta S. et al. Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment // J. Pharm. Biomed. Anal. 2015. V. 106. P. 92. https://doi.org/10.1016/j.jpba.2014.11.031
  60. Loeschner K., Hadrup N., Qvortrup K., Larsen A., Gao X., Vogel U. et al. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate // Part. Fibre Toxicol. 2011. V. 8. P. 18. https://doi.org/10.1186/1743-8977-8-18
  61. Kuznetsova O.V., Mokhodoeva O.B., Maksimova V.V., Dzhenloda R.Kh., Jarosz M., Shkinev V.M., Timerbaev A.R. High-resolution ICP-MS approach for characterization of magnetic nanoparticles for biomedical applications // J. Pharm. Biomed. Anal. 2020. V. 189. Article 113479. https://doi.org/10.1016/j.jpba.2020.113479
  62. Liu J., Yu S., Yin Y., Chao J. Methods for separation, identification, characterization and quantification of silver nanoparticles // TrAC, Trends Anal. Chem. 2012. V. 33. P. 95. https://doi.org/10.1016/j.trac.2011.10.010
  63. Rodoplu D., Boyaci I.H., Tamer U., Suludere Z. Development of a nanoparticle-based gradient method for simple and fast quantification of bacteria-nanoparticle conjugates // J. Nanopart. Res. 2020. V. 22. P. 98. https://doi.org/10.1007/s11051-020-04828-4
  64. Dan Y., Zhang W., Xue R., Ma X., Stephan C., Shi H. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single particle inductively coupled plasma–mass spectrometry analysis // Environ. Sci. Technol. 2015. V. 49. P. 3007. https://doi.org/10.1021/es506179e
  65. Hassellöv M., Readman J.W., Ranville J.F., Tiede K. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles // Ecotoxicology. 2008. V. 17. P. 344. https://doi.org/10.1007/s10646-008-0225-x
  66. Lee S., Bi X., Reed R.B., Ranville J.F., Herckes P., Westerhoff P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements // Environ. Sci. Technol. 2014. V. 48. P. 10291. https://doi.org/10.1021/es502422v
  67. Lopez-Sanz, S., Farinas N.R., Martin-Doimeadios R.d.C.R., Rios A. Analytical strategy based on asymmetric flow field flow fractionation hyphenated to ICP-MS and complementary techniques to study gold nanoparticles transformations in cell culture medium // Anal. Chim. Acta. 2019. V. 1053. P. 178. https://doi.org/10.1016/j.aca.2018.11.053
  68. Malejko J., Świerżewska N., Bajguz A. https://www.sciencedirect.com/author/6602997126/beata-godlewska-zylkiewicz // Spectrochim. Acta. 2018. V. 142. P. 1. https://doi.org/10.1016/j.sab.2018.01.014
  69. Fernández-Bautista T., Gómez-Gómez B., Gracia-Lor E., Pérez-Corona T., Madrid Yo. Selenium health benefit values and Hg and Se speciation studies for elucidating the quality and safety of highly consumed fish species and fish-derived products // Food Chem. 2024. V. 435. Article 137544. https://doi.org/10.1016/j.foodchem.2023.137544
  70. Dong L., Zhou X., Hu L., Yin Y., Liu J. Simultaneous size characterization and mass quantification of the in vivo core-biocorona structure and dissolved species of silver nanoparticles // J. Environ. Sci. 2018. V. 63. P. 227. https://doi.org/10.1016/j.jes.2017.10.010
  71. Mozhayeva D., Engelhard C. Capillary electrophoresis-mass spectrometry: Methods and protocols / Methods in Molecular Biology. V. 2531. Springer, 2022.
  72. Mozhayeva D, Engelhard C. Separation of silver nanoparticles with different coatings by capillary electrophoresis coupled to ICP-MS in single particle mode // Anal. Chem. 2017. V. 89. № 18. P. 9767. https://doi.org/10.1021/acs.analchem.7b01626
  73. Matczuk M., Legat J., Shtykov S.N., Jarosz M., Timerbaev A.R. Characterization of the protein corona of gold nanoparticles by an advanced treatment of CE-ICP-MS data // Electrophoresis. 2016. V. 37. P. 2257. https://doi.org/10.1002/elps.201600152
  74. Fernández-Iglesias N., Bettmer J. Complementary mass spectrometric techniques for the quantification of the protein corona: A case study on gold nanoparticles and human serum proteins // Nanoscale. 2015. V. 7. P. 14324. https://doi.org/10.1039/C5NR02625C
  75. Edison L.K., Ragitha V.M., Pradeep N.S. Enzyme nanoparticles: Microbial source, applications and future perspective / Microbial Nanobionics, Nanotechnology in the Life Sciences / Ed. R. Prasad. Cham: Springer, 2019. Р. 296.
  76. Peters R.J.B., Rivera Z.H., van Bemmel G., Marvin H.J.P., Weigel S., Bouwmeester H. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat // Anal. Bioanal. Chem. 2014. V. 406. P. 3875. https://doi.org/10.1007/s00216-013-7571-0
  77. Bajorath J., Hinrichs W., Saenger W. The enzymatic activity of proteinase K is controlled by calcium // Eur. J. Biochem. 1988. V. 176. P. 441. https://doi.org/10.1111/j.1432-1033.1988.tb14301.x
  78. Loeschner K., Navratilova J., Købler C., Mølhave K., Wagner S., von der Kammer F., Larsen E.H. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS // Anal. Bioanal. Chem. 2013. V. 405. P. 8185. https://doi.org/10.1007/s00216-013-7228-z
  79. Monikh F.A., Chupani L., Zuskova E., Peters R., Vancova M., Vijver M.G. et al. Method for extraction and quantification of metal-based nanoparticles in biological media: Number-based biodistribution and bioconcentration // Environ. Sci. Technol. 2019. V. 53. № 2. P. 946. https://doi.org/10.1021/acs.est.8b03715
  80. Laughton S., Laycock A., Bland G., von der Kammer F., Hofmann T., Casmanand E.A., Lowry G.V. Methanol-based extraction protocol for in soluble and moderately water soluble nanoparticles in plants to enable characterization by single particle ICP-MS // Anal. Bioanal. Chem. 2021. V. 413. P. 299. https://doi.org/10.1007/s00216-020-03014-8
  81. Kińska K., Jiménez-Lamana J., Kowalska J., Krasnodębska-Ostręga B., Szpunar J. Study of the uptake and bioaccumulation of palladium nanoparticles by Sinapisalba using single particle ICP-MS // Sci. Total Environ. 2018. V. 615. P. 1078. https://doi.org/10.1016/j.scitotenv.2017.09.203
  82. Wojcieszek J., Jiménez-Lamana J., Bierła K., Ruzik L., Asztemborska M., Jarosz M., Szpunar J. Uptake, translocation, size characterization and localization of cerium oxide nanoparticles in radish (Raphanus sativus L.) // Sci. Total Environ. 2019. V. 683. P. 284. https://doi.org/10.1016/j.scitotenv.2019.05.265
  83. Taboada-López M.V., Iglesias-López S., Herbello-Hermelo P., Bermejo-Barrera P., Moreda-Piñeiro A. Ultrasound assisted enzymatic hydrolysis for isolating titanium dioxide nanoparticles from bivalve mollusk before sp-ICP-MS // Anal. Chim. Acta. 2018. V. 1018. P. 16. https://doi.org/10.1016/j.aca.2018.02.075
  84. Taboada-López M.V., Alonso-Seijo N., Herbello-Hermelo P., Bermejo-Barrera P., Moreda-Piñeiro A. Determination and characterization of silver nanoparticles in bivalve molluscs by ultrasound assisted enzymatic hydrolysis and sp-ICP-MS // Microchem. J. 2019. V. 148. P. 652. https://doi.org/10.1016/j.microc.2019.05.023
  85. Vidmar J., Buerki-Thurnherr T., Loeschner K. Comparison of the suitability of alkaline or enzymatic sample pre-treatment for characterization of silver nanoparticles in human tissue by single particle ICP-MS // J. Anal. At. Spectrom. 2018. V. 33. № 5. P. 752. https://doi.org/10.1039/C7JA00402H
  86. García R.Á.-F., Fernández-Iglesias N., López-Chaves C., Sánchez-González C., Llopis J., Montes-Bayón M., Bettmer J. Complementary techniques (spICP-MS, TEM, and HPLC-ICP-MS) reveal the degradation of 40 nm citrate- stabilized Au nanoparticles in rat liver after intraperitoneal injection // J. Trace Elem. Med. Biol. 2019. V. 55. P. 1. https://doi.org/10.1016/j.jtemb.2019.05.006
  87. Peters R., Herrera-Rivera Z., Undas A., van der Lee M., Marvin H., Bouwmeester H., Weigel S. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices // J. Anal. At. Spectrom. 2015. V. 30. № 6. P. 1274. https://doi.org/10.1039/C4JA00357H
  88. Huang Y., Tsz-Shan Lum J., Sze-Yin Leung K. Single particle ICP-MS combined with internal standardization for accurate characterization of polydisperse nanoparticles in complex matrices // J. Anal. At. Spectrom. 2020. V. 35. P. 2148. https://doi.org/10.1039/D0JA00180E
  89. Torrent L., Iglesias M., Marguí E., Hidalgo M., Verdaguer D., Llorens L. et al. Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration // J. Hazard. Mater. 2020. V. 384. Article 121201. https://doi.org/10.1016/j.jhazmat.2019.121201
  90. Gao Ya., Zhang R., Sun H., Guo Y., Chen L., Shi X., Ge G. High-efficiency mechanically assisted alkaline extraction of nanoparticles from biological tissues for spICP-MS analysis // Anal. Bioanal. Chem. 2022. V. 414. P. 4401. https://doi.org/10.1007/s00216-022-03972-1
  91. Noireaux J., Grall R., Hullo M., Chevillard S., Oster C., Brun E. et al. Gold nanoparticle uptake in tumor cells: Quantification and size distribution by sp-ICPMS // Separations. 2019. V. 6. P. 3. https://doi.org/10.3390/separations6010003
  92. Gray E.P., Coleman J., Bednar A.J., Kennedy A.J., Ranville J.F., Higgins C.P. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry // Environ. Sci. Technol. 2013. V. 47. № 24. P. 14315. https://doi.org/10.1021/es403558c
  93. Chalifoux A., Hadioui M., Amiri N., Wilkinson K.J. Analysis of silver nanoparticles in ground beef by single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) // Molecules. 2023. V. 28. P. 4442. https://doi.org/10.3390/molecules28114442
  94. Loeschner K., Brabrand M.S.J., Sloth J.J., Larsen E.H. Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS // Anal. Bioanal Chem. 2014. V. 406. № 16. P. 3845. https://doi.org/10.1007/s00216-013-7431-y
  95. Grasso A., Ferrante M., Zuccarello P., Filippini T., Arena G., Fiore M. et al. Chemical characterization and quantification of titanium dioxide nanoparticles (TiO2-NPs) in seafood by single-particle ICP-MS: Assessment of dietary exposure // Int. J. Environ. Res. Public Health. 2020. V. 17. P. 9547. https://doi.org/10.3390/ijerph17249547
  96. Fernandez-Trujillo S., Jimenez-Moreno M., Ríos A., Martín-Doimeadios R.C.R. A simple analytical methodology for platinum nanoparticles control in complex clinical matrices via SP-ICP-MS // Talanta. 2021. V. 231. P. 1. https://doi.org/10.1016/j.talanta.2021.122370
  97. Johnson M.E., Hanna S.K., Bustos A.R.M., Sims C.M., Elliott L.C.C., Lingayat A. et al. Separation, sizing, and quantitation of engineered nanoparticles in an organism model using inductively coupled plasma mass spectrometry and image analysis // ACS Nano. 2017. V. 11. P. 526. https://doi.org/10.1021/acsnano.6b06582
  98. Ma S., Zhou K., Yang K., Lin D. Heteroagglomeration of oxide nanoparticles with algae cells: Effects of particle type, ionic strength and pH // Environ. Sci. Technol. 2015. V. 49. № 2. P. 932. https://doi.org/10.1021/es504730k
  99. Zhou Q., Liu L., Liu N., He B., Hu L., Wang L. Determination and characterization of metal nanoparticles in clams and oysters // Ecotoxicol. Environ. Saf. 2020. V. 198. Article 110670. https://doi.org/10.1016/j.ecoenv.2020.110670
  100. Ishizaka T., Nagano K., Tasaki I., Tao H., Gao J.Q., Harada K. et al. Optimization and evaluation of pretreatment method for sp-ICP-MS to reveal the distribution of silver nanoparticles in the body // Nanoscale Res. Lett. 2019. V. 14. P. 1. https://doi.org/10.1186/s11671-019-3016-9
  101. Clark N.J., Clough R., Boyle D., Handy R.D. Development of a suitable detection method for silver nanoparticles in fish tissue using single particle ICP-MS // Environ. Sci.: Nano. 2019. V. 6. P. 3388. https://doi.org/10.1039/C9EN00547A
  102. Mueller L., Traub H., Jakubowski N., Drescher D., Baranov V.I., Kneipp J. Trends in single-cell analysis by use of ICP-MS // Anal. Bioanal. Chem. 2014. V. 406. P. 6963. https://doi.org/10.1007/s00216-014-8143-7
  103. Davison C., Beste D., Bailey M., Felipe-Sotelo М. Expanding the boundaries of atomic spectroscopy at the single-cell level: Critical review of SP-ICP-MS, LIBS and LA-ICP-MS advances for the elemental analysis of tissues and single cells // Anal. Bioanal. Chem. 2023. V. 415. P. 6931. https://doi.org/10.1007/s00216-023-04721-8
  104. Lores-Padín A., Pereiro R., Fernández B. Laser ablation ICP-MS: New instrumental developments, applications and trends / Recent Advances in Analytical Techniques. 2020. V. 4. P. 1.
  105. Metarapi D., van Elteren J.T. Fundamentals of single particle analysis in biomatrices by laser ablation-inductively coupled plasma mass spectrometry // J. Anal. At. Spectrom. 2020. V. 35. P. 784. https://doi.org/10.1039/D0JA00003E
  106. Metarapi D., van Elteren J.T., Šala M. Studying gold nanoparticle degradation during laser ablation–single particle-inductively coupled plasma mass spectrometry analysis // J. Anal. At. Spectrom. 2021. V. 36. P. 1879. https://doi.org/10.1039/D1JA00150G
  107. Metarapi D., Šala M., Vogel-Mikuš K., Šelih V.S., van Elteren J.T. Nanoparticle analysis in biomaterials using laser ablation–single particle–inductively coupled plasma mass spectrometry // Anal. Chem. 2019. V. 91. P. 6200. https://doi.org/10.1021/acs.analchem.9b00853
  108. Metarapi D., van Elteren J.T., Šala M., Vogel-Mikuš K., Arčon I., Šelih V.S. et al. Laser ablation-single-particle-inductively coupled plasma mass spectrometry as a multimodality bioimaging tool in nano-based omics // Environ. Sci.: Nano. 2021. V. 8. P. 647. https://doi.org/10.1039/D0EN01134G
  109. Seiffert S.B., Elinkmann M., Niehaves E., Vennemann A., Mozhayeva D., Kröger S. et al. Calibration strategy to size and localize multi-shaped nanoparticles in tissue sections using LA-spICP-MS // Anal. Chem. 2023. V. 18. P. 6383. https://doi.org/10.1021/acs.analchem.3c00022
  110. Li Q., Wang Z., Mo J., Zhang G., Chen Y., Huang C. Imaging gold nanoparticles in mouse liver by laser ablation inductively coupled plasma mass spectrometry // Sci. Rep. 2017. V. 7. P. 2965. https://doi.org/10.1038/s41598-017-03275-x
  111. Jantarat T., Lauterbach J.D., Doungchawee J., Agrohia D.K., Vachet R.W. Quantitative imaging of the sub-organ distributions of nanomaterials in biological tissues via laser ablation inductively coupled plasma mass spectrometry // Analyst. 2023. V. 148. № 18. P. 4479. https://doi.org/10.1039/D3AN00839H
  112. Jiménez-Lamana J., Laborda F., Bolea E., Abad-Álvaro I., Castillo J.R., Bianga J. et al. An insight into silver nanoparticles bioavailability in rats // Metallomics. 2014. V. 6. № 12. P. 2242. https://doi.org/10.1039/c4mt00200h
  113. Lia Z., Liub R., Lv Y. ICP-MS based multiplexed bioassay: Principles, approaches and progresses // Appl. Spectrosc. Rev. 2021. P. 1. https://doi.org/10.1080/05704928.2021.1918703
  114. Wang M., Zheng L.-N., Wang B., Chen H.-Q., Zhao Y.-L., Chai Z.-F. et al. Quantitative analysis of gold nanoparticles in single cells by laser ablation inductively coupled plasma-mass spectrometry // Anal. Chem. 2014. V. 86. № 20. P. 10252. https://doi.org/10.1021/ac502438n

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of publications showing the number of articles published per year in which NPs were extracted from a biological matrix using various methods and analyzed by the MS-ICP-ICh method [27]. Columns highlighted with solid, dashed, and dotted lines indicate studies that examined animal organs and tissues, plant tissues, and biofluids, respectively.

Download (421KB)
3. Fig. 2. Particle size distribution of Ag@PEG and Ag@COONa obtained using ICP-MS after enzymatic or alkaline hydrolysis [85].

Download (294KB)

Copyright (c) 2025 Russian Academy of Sciences