Purinergic modulation in the developing rat hippocampus
- Авторлар: Safiulina V.F.1
-
Мекемелер:
- Institute of Physiology in Komi Federal Research Center of the Scientific Center of the Ural Branch of the Russian Academy of Sciences
- Шығарылым: Том 61, № 2 (2025)
- Беттер: 84-96
- Бөлім: REVIEWS
- URL: https://edgccjournal.org/0044-4529/article/view/685049
- DOI: https://doi.org/10.31857/S0044452925020024
- EDN: https://elibrary.ru/IEUEGT
- ID: 685049
Дәйексөз келтіру
Аннотация
Even during early postnatal development, rhythmic electrical activity emerges across multiple regions of the nervous system, particularly in the hippocampus. Within this structure, such activity takes the form of giant depolarizing potentials (GDPs) — synchronized network events crucial for neuronal maturation and the establishment of synaptic connectivity. The generation and propagation of GDPs are regulated by multiple mechanisms, among which the purinergic system (involving ATP and adenosine), studied by our team, holds particular significance. Our research has demonstrated that during GDPs, ATP is released into the extracellular space and subsequently hydrolyzed to adenosine. Both ATP and adenosine can modulate the activity of neurons and glial cells in newborns through various types of purinergic receptors. This review synthesizes current data on the diverse effects of purinergic modulation in the neonatal hippocampus, the phenomenon of bidirectional purinergic signaling, and the expression and functional roles of all purinoceptor subtypes in the postnatal period. Special attention is given to the physiological role of purinergic modulation in the developing hippocampus.
Негізгі сөздер
Толық мәтін

Авторлар туралы
V. Safiulina
Institute of Physiology in Komi Federal Research Center of the Scientific Center of the Ural Branch of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: Victoria.Safiulina@gmail.com
Ресей, Syktyvkar
Әдебиет тізімі
- Luo L (2021) Architectures of neuronal circuits. Science 373(6559): eabg7285. https://doi.org/10.1126/science.abg7285
- Bressan C, Saghatelyan A (2021) Intrinsic mechanisms regulating neuronal migration in the postnatal brain. Front Cell Neurosci 14: 620379. https://doi.org/10.3389/fncel.2020.620379
- Warm D, Schroer J, Sinning A (2022) Gabaergic interneurons in early brain development: conducting and orchestrated by cortical network activity. Front Mol Neurosci 14: 807969. https://doi.org/10.3389/fnmol.2021.807969
- Klavinskis-Whiting S, Bitzenhofer S, Hanganu-Opatz I, Ellender T (2023) Generation and propagation of bursts of activity in the developing basal ganglia. Cereb Cortex 33(20): 10595–10613. https://doi.org/10.1093/cercor/bhad307
- Shevtsova NA, Ha NT, Rybak IA, Dougherty KJ (2020) Neural interactions in developing rhythmogenic spinal networks: insights from computational modeling. Front Neural Circuits 14: 614615. https://doi.org/10.3389/fncir.2020.614615
- Zhang Z, Collins DC, Maier JX (2021) Network dynamics in the developing piriform cortex of unanesthetized rats. Cereb Cortex 31(2): 1334–1346. https://doi.org/10.1093/cercor/bhaa300
- Riyahi P, Phillips MA, Colonnese MT (2021) Input-independent homeostasis of developing thalamocortical activity. eNeuro 8(3): ENEURO.0184-21.2021. https://doi.org/10.1523/ENEURO.0184-21.2021
- Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol 416: 303–325. https://doi.org/10.1113/jphysiol.1989.sp017762
- Juzekaeva E, Nasretdinov A, Mukhtarov M, Shipkov D, Valeeva G, Khazipov R (2024) Comparison of extracellular giant depolarizing potentials in vitro and early sharp waves in vivo in the CA1 hippocampus of neonatal rats. Biochem Biophys Res Commun 735: 150823. https://doi.org/10.1016/j.bbrc.2024.150823
- Murata Y, Colonnese MT (2020) GABAergic interneurons excite neonatal hippocampus in vivo. Sci Adv 6(24): eaba1430. https://doi.org/10.1126/sciadv.aba1430
- Bocchio M, Gouny C, Angulo-Garcia D, Toulat T, Tressard T, Quiroli E, Baude A, Cossart R (2020) Hippocampal hub neurons maintain distinct connectivity throughout their lifetime. Nat Commun 11(1): 4559. https://doi.org/10.1038/s41467-020-18432-6
- Ojanen S, Kuznetsova T, Kharybina Z, Voikar V, Lauri SE, Taira T (2023) Interneuronal GluK1 kainate receptors control maturation of GABAergic transmission and network synchrony in the hippocampus. Mol Brain 16(1): 43. https://doi.org/10.1186/s13041-023-01035-9
- Bolea S, Avignone E, Berretta N, Sanchez-Andres JV, Cherubini E (1999) Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal hippocampal slices. J Neurophysiol 81(5): 2095–2102. https://doi.org/10.1152/jn.1999.81.5.2095
- Márquez LA, Griego E, López Rubalcava C, Galván EJ (2023) NMDA receptor activity during postnatal development determines intrinsic excitability and mossy fiber long-term potentiation of CA3 pyramidal cells. Hippocampus 33(8): 906–921. https://doi.org/10.1002/hipo.23524
- Khazipov R, Jensen FE (2022) Neurons and circuits during brain development. Neurobiology of the Epilepsies: From Epilepsy: A Comprehensive Textbook.
- Sebastian ER, Quintanilla JP, Sánchez-Aguilera A, Esparza J, Cid E, de la Prida LM (2023) Topological analysis of sharp-wave ripple waveforms reveals input mechanisms behind feature variations. Nat Neurosci 26(12): 2171–2181. https://doi.org/10.1038/s41593-023-01471-9
- Schieferstein N, Del Toro A, Evangelista R, Imbrosci B, Swaminathan A, Schmitz D, Maier N, Kempter R (2024) Propagation of sharp wave-ripple activity in the mouse hippocampal CA3 subfield in vitro. J Physiol 602(19): 5039–5059. https://doi.org/10.1113/JP285671
- Kis N, Lükő B, Herédi J, Magó Á, Erlinghagen B, Ahmadi M, Raus Balind S, Irás M, Ujfalussy BB, Makara JK (2024) Cholinergic regulation of dendritic Ca2+ spikes controls firing mode of hippocampal CA3 pyramidal neurons. Proc Natl Acad Sci U S A 121(46): e2321501121. https://doi.org/10.1073/pnas.2321501121
- Phelan KD, Shwe UT, Wu H, Zheng F (2024) Investigating contributions of canonical transient receptor potential channel 3 to hippocampal hyperexcitability and seizure-induced neuronal cell death. Int J Mol Sci 25(11): 6260. https://doi.org/10.3390/ijms25116260
- Schoenfeld G, Carta S, Rupprecht P, Ayaz A, Helmchen F (2021) In vivo calcium imaging of CA3 pyramidal neuron populations in adult mouse hippocampus. eNeuro 8(4): ENEURO.0023-21.2021. https://doi.org/10.1523/ENEURO.0023-21.2021
- Pires J, Nelissen R, Mansvelder HD, Meredith RM (2021) Spontaneous synchronous network activity in the neonatal development of mPFC in mice. Dev Neurobiol 81(2): 207–225. https://doi.org/10.1002/dneu.22811
- Sipilä ST, Huttu K, Voipio J, Kaila K (2006) Intrinsic bursting of immature CA3 pyramidal neurons and consequent giant depolarizing potentials are driven by a persistent Na+ current and terminated by a slow Ca2+-activated K+ current. Eur J Neurosci 23(9): 2330–2338. https://doi.org/10.1111/j.1460-9568.2006.04757.x
- Cellot G, Di Mauro G, Ricci C, Tiribelli C, Bellarosa C, Ballerini L (2025) Bilirubin triggers calcium elevations and dysregulates giant depolarizing potentials during rat hippocampus maturation. Cells 14(3): 172. https://doi.org/10.3390/cells14030172
- Kasyanov AM, Safiulina VF, Voronin LL, Cherubini E (2004) GABA-mediated giant depolarizing potentials as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus. Proc Natl Acad Sci U S A 101(11): 3967–3972. https://doi.org/10.1073/pnas.0305974101
- Wu MW, Kourdougli N, Portera-Cailliau C (2024) Network state transitions during cortical development. Nat Rev Neurosci 25(8): 535–552. https://doi.org/10.1038/s41583-024-00824-y
- Curtis DR, Duggan AW, Felix D, Johnston GA (1970) GABA, bicuculline and central inhibition. Nature 226(5252): 1222–1224. https://doi.org/10.1038/2261222a0
- Cossart R, Khazipov R (2022) How development sculpts hippocampal circuits and function. Physiol Rev 102(1): 343–378. https://doi.org/10.1152/physrev.00044.2020
- Allene C, Picardo MA, Becq H, Miyoshi G, Fishell G, Cossart R (2012) Dynamic changes in interneuron morphophysiological properties mark the maturation of hippocampal network activity. J Neurosci 32(19): 6688–6698. https://doi.org/10.1523/JNEUROSCI.0081-12.2012
- Flossmann T, Kaas T, Rahmati V, Kiebel SJ, Witte OW, Holthoff K, Kirmse K (2019) Somatostatin interneurons promote neuronal synchrony in the neonatal hippocampus. Cell Rep 26(12): 3173–3182.e5. https://doi.org/10.1016/j.celrep.2019.02.061
- Mòdol L, Moissidis M, Selten M, Oozeer F, Marín O (2024) Somatostatin interneurons control the timing of developmental desynchronization in cortical networks. Neuron 112(12): 2015–2030.e5. https://doi.org/10.1016/j.neuron.2024.03.014
- Kasiyanov A, Fujii N, Tamamura H, Xiong H (2008) Modulation of network-driven, GABA-mediated giant depolarizing potentials by SDF-1α in the developing hippocampus. Developmental Neuroscience 30(4): 285–292. https://doi.org/10.1159/000112520
- Pál B (2024) On the functions of astrocyte-mediated neuronal slow inward currents. Neural Regen Res 19(12): 2602–2612. https://doi.org/10.4103/NRR.NRR-D-23-01723
- Robert V, Butola T, Basu J (2023) Cortical and thalamic inputs drive distinct hippocampal microcircuits to modulate synchronized activity during development. Neuron 111(6): 761–763. https://doi.org/10.1016/j.neuron.2023.02.031
- Safiulina VF, Zacchi P, Taglialatela M, Yaari Y, Cherubini E (2008) Low expression of Kv7/M channels facilitates intrinsic and network bursting in the developing rat hippocampus. J Physiol 586(22): 5437–5453. https://doi.org/10.1113/jphysiol.2008.156257
- Le Magueresse C, Safiulina V, Changeux JP, Cherubini E (2006) Nicotinic modulation of network and synaptic transmission in the immature hippocampus investigated with genetically modified mice. J Physiol 576(Pt 2): 533–546. https://doi.org/10.1113/jphysiol.2006.117572
- Cellot G, Di Mauro G, Ricci C, Tiribelli C, Bellarosa C, Ballerini L (2025) Bilirubin Triggers Calcium Elevations and Dysregulates Giant Depolarizing Potentials During Rat Hippocampus Maturation. Cells 14(3): 172. https://doi.org/10.3390/cells14030172
- Yang D, Qi G, Ort J, Witzig V, Bak A, Delev D, Koch H, Feldmeyer D (2024) Modulation of large rhythmic depolarizations in human large basket cells by norepinephrine and acetylcholine. Commun Biol 7(1): 885. https://doi.org/10.1038/s42003-024-06546-2
- Pinna S, Kunz C, Halpern A, Harrison SA, Jordan SF, Ward J, Werner F, Lane N (2022) A prebiotic basis for ATP as the universal energy currency. PLoS Biol 20(10): e3001437. https://doi.org/10.1371/journal.pbio.3001437
- Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68(3): 213–237. https://doi.org/10.1113/jphysiol.1929.sp002608
- Dale H (1935) Pharmacology and nerve-endings (Walter Ernest Dixon Memorial Lecture). Proc R Soc Med 28(3): 319–332.
- Westfall DP, Dalziel HH, Forsyth KM (2024) ATP as a neurotransmitter, cotransmitter, and neuromodulator. In: Adenosine and adenine nucleotides as regulators of cellular function, CRC Press. p. 295–305.
- Kennedy C (2021) ATP as a cotransmitter in sympathetic and parasympathetic nerves — another Burnstock legacy. Auton Neurosci 235: 102860. https://doi.org/10.1016/j.autneu.2021.102860
- Kennedy C (2021) The P2Y/P2X divide: how it began. Biochem Pharmacol 187: 114408. https://doi.org/10.1016/j.bcp.2021.114408
- Schrader J (2022) Ectonucleotidases as bridge between the ATP and adenosine world: reflections on Geoffrey Burnstock. Purinergic Signal 18(2): 193–198. https://doi.org/10.1007/s11302-022-09862-6
- Di Virgilio F, Vultaggio-Poma V, Falzoni S, Giuliani AL (2023) Extracellular ATP: a powerful inflammatory mediator in the central nervous system. Neuropharmacology 224: 109333. https://doi.org/10.1016/j.neuropharm.2022.109333
- Cho SH, Tóth K, Kim D, Vo PH, Lin CH, Handakumbura PP, Ubach AR, Evans S, Paša-Tolić L, Stacey G (2022) Activation of the plant mevalonate pathway by extracellular ATP. Nat Commun 13(1): 450. https://doi.org/10.1038/s41467-022-28150-w
- Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y (2021) From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 6(1): 162. https://doi.org/10.1038/s41392-021-00553-z
- Glaser T, Ulrich H (2023) Purinergic signaling in brain physiology. In: Purinergic Signaling in Neurodevelopment, Neuroinflammation and Neurodegeneration. Cham: Springer. p. 23–40.
- Sattler C, Benndorf K (2022) Enlightening activation gating in P2X receptors. Purinergic Signal 18(2): 177–191. https://doi.org/10.1007/s11302-022-09850-w
- Wildner F, Neuhäusel TS, Klemz A, Kovács R, Ulmann L, Geiger JRP, Gerevich Z (2024) Extracellular ATP inhibits excitatory synaptic input on parvalbumin-positive interneurons and attenuates gamma oscillations via P2X4 receptors. Br J Pharmacol 181(11): 1635–1653. https://doi.org/10.1111/bph.16298
- North RA (2016) P2X receptors. Philos Trans R Soc Lond B Biol Sci 371(1700): 20150427. https://doi.org/10.1098/rstb.2015.0427
- Bennetts FM, Mobbs JI, Ventura S, Thal DM (2022) The P2X1 receptor as a therapeutic target. Purinergic Signal 18(4): 421–433. https://doi.org/10.1007/s11302-022-09880-4
- Sivcev S, Kudova E, Zemkova H (2023) Neurosteroids as positive and negative allosteric modulators of ligand-gated ion channels: P2X receptor perspective. Neuropharmacology 234: 109542. https://doi.org/10.1016/j.neuropharm.2023.109542
- Khakh BS, North R A (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442(7102): 527–532. https://doi.org/10.1038/nature04886
- Sheng D, Hattori M (2022) Recent progress in the structural biology of P2X receptors. Proteins 90(10): 1779–1785. https://doi.org/10.1002/prot.26302
- von Kügelgen I (2024) Pharmacological characterization of P2Y receptor subtypes — an update. Purinergic Signal 20(2): 99–108. https://doi.org/10.1007/s11302-023-09963-w
- Müller CE, Namasivayam V (2021) Recommended tool compounds and drugs for blocking P2X and P2Y receptors. Purinergic Signal 17(4): 633–648. https://doi.org/10.1007/s11302-021-09813-7
- Li B, Han S, Wang M, Yu Y, Ma L, Chu X, Tan Q, Zhao Q, Wu B (2023) Structural insights into signal transduction of the purinergic receptors P2Y1R and P2Y12R. Protein Cell 14(5): 382–386. https://doi.org/10.1093/procel/pwac025
- Lalo U, Pankratov Y (2023) ATP-mediated signalling in the central synapses. Neuropharmacology 229: 109477. https://doi.org/10.1016/j.neuropharm.2023.109477
- Shigetomi E, Sakai K, Koizumi S (2024) Extracellular ATP/adenosine dynamics in the brain and its role in health and disease. Front Cell Dev Biol 11: 1343653. https://doi.org/10.3389/fcell.2023.1343653
- Menéndez Méndez A, Smith J, Engel T (2020) Neonatal seizures and purinergic signalling. Int J Mol Sci 21(21): 7832. https://doi.org/10.3390/ijms21217832
- Goenaga J, Araque A, Kofuji P, Herrera Moro Chao D (2023) Calcium signaling in astrocytes and gliotransmitter release. Front Synaptic Neurosci 15: 1138577. https://doi.org/10.3389/fnsyn.2023.1138577
- Lovatt D, Xu Q, Liu W, Takano T, Smith NA, Schnermann J, Tieu K, Nedergaard M (2012) Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc Natl Acad Sci U S A 109(16): 6265–6270. https://doi.org/10.1073/pnas.1120997109
- Rimbert S, Moreira J B, Xapelli S, Lévi S (2023) Role of purines in brain development, from neuronal proliferation to synaptic refinement. Neuropharmacology 237: 109640. https://doi.org/10.1016/j.neuropharm.2023.109640
- Hatashita Y, Wu Z, Fujita H, Kumamoto T, Livet J, Li Y, Tanifuji M, Inoue T (2023) Spontaneous and multifaceted ATP release from astrocytes at the scale of hundreds of synapses. Glia 71(9): 2250–2265. https://doi.org/10.1002/glia.24392
- Manca P, Mameli O, Caria MA, Torrejón-Escribano B, Blasi J (2014) Distribution of SNAP25, VAMP1 and VAMP2 in mature and developing deep cerebellar nuclei after estrogen administration. Neuroscience 266: 102–115. https://doi.org/10.1016/j.neuroscience.2014.02.008
- Nabel AL, Teich L, Wohlfrom H, Alexandrova O, Heß M, Pecka M, Grothe B (2024) Development of myelination and axon diameter for fast and precise action potential conductance. Glia 72(4): 794–808. https://doi.org/10.1002/glia.24504
- Menéndez-Méndez A, Díaz-Hernández JI, Ortega F, Gualix J, Gómez-Villafuertes R, Miras-Portugal MT (2017) Specific temporal distribution and subcellular localization of a functional vesicular nucleotide transporter (VNUT) in cerebellar granule neurons. Front Pharmacol 8: 951. https://doi.org/10.3389/fphar.2017.00951
- Juvenal G, Higa G S V, Bonfim Marques L, Tessari Zampieri T, Costa Viana FJ, Britto LR, Tang Y, Illes P, Di Virgilio F, Ulrich H, De Pasquale R (2024) Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. Purinergic Signal 21: 149–177. https://doi.org/10.1007/s11302-024-10034-x
- Zimmermann H (2021) Ectonucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase in purinergic signaling: how the field developed and where we are now. Purinergic Signal 17(1): 117–125. https://doi.org/10.1007/s11302-020-09755-6
- Todorov LD, Mihaylova-Todorova S, Westfall TD, Sneddon P, Kennedy C, Bjur RA, Westfall DP (1997) Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature 387(6628): 76–79. https://doi.org/10.1038/387076a0
- Grković I, Drakulić D, Martinović J, Mitrović N (2019) Role of ectonucleotidases in synapse formation during brain development: physiological and pathological implications. Curr Neuropharmacol 17(1): 84–98. https://doi.org/10.2174/1570159X15666170518151541
- Gomez-Castro F, Zappettini S, Pressey JC, Silva CG, Russeau M, Gervasi N, Figueiredo M, Montmasson C, Renner M, Canas PM, Gonçalves FQ, Alçada-Morais S, Szabó E, Rodrigues RJ, Agostinho P, Tomé AR, Caillol G, Thoumine O, Nicol X, Leterrier C, Lujan R, Tyagarajan SK, Cunha RA, Esclapez M, Bernard C, Lévi S (2021) Convergence of adenosine and GABA signaling for synapse stabilization during development. Science 374(6568): eabk2055. https://doi.org/10.1126/science.abk2055
- Safiulina VF, Kasyanov AM, Sokolova E, Cherubini E, Giniatullin R (2005) ATP contributes to the generation of network-driven giant depolarizing potentials in the neonatal rat hippocampus. J Physiol 565(Pt 3): 981–992. https://doi.org/10.1113/jphysiol.2005.085621
- Vassort G (2001) Adenosine 5′-triphosphate: a P2-purinergic agonist in the myocardium. Physiol Rev 81(2): 767–806. https://doi.org/10.1152/physrev.2001
- Anikina TA, Sitdikov FG, Khamzina EY, Bilalova GA (2005) Role of purinoceptors in cardiac function in rats during ontogeny. Bull Exp Biol Med 140(5): 483–485. https://doi.org/10.1007/s10517-006-0002-x
- Pustovit KB, Potekhina VM, Ivanova AD, Petrov AM, Abramochkin DV, Kuzmin VS (2019) Extracellular ATP and β-NAD alter electrical properties and cholinergic effects in the rat heart in age-specific manner. Purinergic Signal 15(1): 107–117. https://doi.org/10.1007/s11302-019-09645-6
- Safiulina VF, Kasyanov AM, Giniatullin R, Cherubini E (2005) Adenosine down-regulates giant depolarizing potentials in the developing rat hippocampus by exerting a negative control on glutamatergic inputs. J Neurophysiol 94(4): 2797–2804. https://doi.org/10.1152/jn.00445.2005
- Krnjević K (2022) Membrane current activation and inactivation during hypoxia in hippocampal neurons. In: Surviving Hypoxia, CRC Press, pp. 365–387.
- Stone TW (2024) Adenosine as a neuroactive compound in the central nervous system. In: Adenosine and adenine nucleotides as regulators of cellular function, CRC Press, pp. 329–338.
- Andrade-Talavera Y, Pérez-Rodríguez M, Prius-Mengual J, Rodríguez-Moreno A (2023) Neuronal and astrocyte determinants of critical periods of plasticity. Trends Neurosci 46(7): 566–580. https://doi.org/10.1016/j.tins.2023.04.005
- Rimbert S, Moreira JB, Xapelli S, Lévi S (2023) Role of purines in brain development, from neuronal proliferation to synaptic refinement. Neuropharmacology 237: 109640. https://doi.org/10.1016/j.neuropharm.2023. 109640
- Cherchi F, Pugliese AM, Coppi E (2021) Oligodendrocyte precursor cell maturation: role of adenosine receptors. Neural Regen Res 16(9): 1686–1692. https://doi.org/10.4103/1673-5374.306058
- Ribeiro FF, Ferreira F, Rodrigues RS, Soares R, Pedro DM, Duarte-Samartinho M, Aroeira RI, Ferreiro E, Valero J, Solá S, Mira H, Sebastião AM, Xapelli S (2021) Regulation of hippocampal postnatal and adult neurogenesis by adenosine A2A receptor: Interaction with brain-derived neurotrophic factor. Stem Cells 39(10): 1362–1381. https://doi.org/10.1002/stem.3421
- Rodriguez-Alvarez N, Jimenez-Mateos EM, Engel T, Quinlan S, Reschke CR, Conroy RM, Bhattacharya A, Boylan GB, Henshall DC (2017) Effects of P2X7 receptor antagonists on hypoxia-induced neonatal seizures in mice. Neuropharmacology 116: 351–363. https://doi.org/10.1016/j.neuropharm.2017.01.005
- Rubio ME, Soto F (2001) Distinct localization of P2X receptors at excitatory postsynaptic specializations. J Neurosci 21(2): 641–653. https://doi.org/10.1523/JNEUROSCI.21-02-00641.2001
- Henshall DC, Engel T (2015) P2X purinoceptors as a link between hyperexcitability and neuroinflammation in status epilepticus. Epilepsy Behav 49: 8–12. https://doi.org/10.1016/j.yebeh.2015.02.031
- Schwindt TT, Trujillo CA, Negraes PD, Lameu C, Ulrich H (2011) Directed differentiation of neural progenitors into neurons is accompanied by altered expression of P2X purinergic receptors. J Mol Neurosci 44(3): 141–146. https://doi.org/10.1007/s12031-010-9417-y
- Ross FM, Brodie MJ, Stone TW (1998) Modulation by adenine nucleotides of epileptiform activity in the CA3 region of rat hippocampal slices. Br J Pharmacol 123(1): 71–80. https://doi.org/10.1038/sj.bjp.0701586
- Pankratov YV, Lalo UV, Krishtal OA (2002) Role for P2X receptors in long-term potentiation. J Neurosci 22(19): 8363–8369. https://doi.org/10.1523/JNEUROSCI.22-19-08363.2002
- Smith J, Lopez-Avila BG, Engel T, Mateos EMJ, Alves M (2024) Differential expression of the metabotropic P2Y receptor family after hypoxia-induced seizures in neonates and seizure suppression via P2Y1 receptor agonism. Purinergic Signal 20(2): 157–162. https://doi.org/10.1007/s11302-023-09923-4
- Zhu Y, Kimelberg HK (2001) Developmental expression of metabotropic P2Y(1) and P2Y(2) receptors in freshly isolated astrocytes from rat hippocampus. J Neurochem 77(2): 530–541. https://doi.org/10.1046/j.1471-4159.2001.00241.x
- Rodrigues RJ, Figueira AS, Marques JM (2022) P2Y1 Receptor as a Catalyst of Brain Neurodegeneration. NeuroSci 3(4): 604–615. https://doi.org/10.3390/neurosci3040043
- Zhang W, Bonadiman A, Ciorraga M, Benitez MJ, Garrido JJ (2019) P2Y1 Purinergic Receptor Modulates Axon Initial Segment Initial Development. Front Cell Neurosci 13:152. https://doi.org/10.3389/fncel.2019.00152
- Barańska J, Czajkowski R, Pomorski P (2017) P2Y1 Receptors — Properties and Functional Activities. Adv Exp Med Biol 1051: 71–89. https://doi.org/10.1007/5584_2017_57
- Felix L, Stephan J, Rose CR (2021) Astrocytes of the early postnatal brain. Eur J Neurosci 54(5): 5649–5672. https://doi.org/10.1111/ejn.14780
- Kukley M, Kiladze M, Tognatta R, Hans M, Swandulla D, Schramm J, Dietrich D (2008) Glial cells are born with synapses. FASEB J 22(8): 2957–2969. https://doi.org/10.1096/fj.07-090985
- Wang Y, Fu AKY, Ip NY (2022) Instructive roles of astrocytes in hippocampal synaptic plasticity: neuronal activity-dependent regulatory mechanisms. FEBS J 289(8): 2202–2218. https://doi.org/10.1111/febs.15878
- Cserép C, Pósfai B, Dénes Á (2021) Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions. Neuron 109(2): 222–240. https://doi.org/10.1016/j.neuron.2020.11.007
- Cserép C, Schwarcz AD, Pósfai B, László ZI, Kellermayer A, Környei Z, Kisfali M, Nyerges M, Lele Z, Katona I, Ádám Dénes (2022) Microglial control of neuronal development via somatic purinergic junctions. Cell Rep 40(12): 111369. https://doi.org/10.1016/j.celrep.2022.111369
- Du Y, Brennan FH, Popovich PG, Zhou M (2022) Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia 70(7): 1359–1379. https://doi.org/10.1002/glia.24179
- Deivasigamani S, Miteva MT, Natale S, Gutierrez-Barragan D, Basilico B, Di Angelantonio S, Weinhard L, Molotkov D, Deb S, Pape C, Bolasco G, Galbusera A, Asari H, Gozzi A, Ragozzino D, Gross CT (2023) Microglia complement signaling promotes neuronal elimination and normal brain functional connectivity. Cereb Cortex 33(21): 10750–10760. https://doi.org/10.1093/cercor/bhad313
- Ferrucci L, Cantando I, Cordella F, Di Angelantonio S, Ragozzino D, Bezzi P (2023) Microglia at the Tripartite Synapse during Postnatal Development: Implications for Autism Spectrum Disorders and Schizophrenia. Cells 12(24): 2827. https://doi.org/10.3390/cells12242827
- Cohen JE, Fields RD (2008) Activity-dependent neuron-glial signaling by ATP and leukemia-inhibitory factor promotes hippocampal glial cell development. Neuron Glia Biol 4(1): 43–55. https://doi.org/10.1017/S1740925X09000076
- Lezmy J, Arancibia-Cárcamo IL, Quintela-López T, Sherman DL, Brophy PJ, Attwell D (2021) Astrocyte Ca2+-evoked ATP release regulates myelinated axon excitability and conduction speed. Science 374(6565):eabh2858. https://doi.org/10.1126/science.abh2858
- Lezmy J (2023) How astrocytic ATP shapes neuronal activity and brain circuits. Curr Opin Neurobiol 79: 102685. https://doi.org/10.1016/j.conb.2023.102685
- Safiulina VF, Afzalov R, Khiroug L, Cherubini E, Giniatullin R (2006) Reactive oxygen species mediate the potentiating effects of ATP on GABAergic synaptic transmission in the immature hippocampus. J Biol Chem 281(33): 23464–23470. https://doi.org/10.1074/jbc.M601627200
- Rahman MM, Islam MR, Yamin M, Islam MM, Sarker MT, Meem AFK, Akter A, Emran TB, Cavalu S, Sharma R (2022) Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. Oxid Med Cell Longev 2022: 3201644. https://doi.org/10.1155/2022/3201644
- Vargas E, Petrou S, Reid CA (2013) Genetic and pharmacological modulation of giant depolarizing potentials in the neonatal hippocampus associates with increased seizure susceptibility. J Physiol 591(1): 57–65. https://doi.org/10.1113/jphysiol.2012.234674
- Beamer E, Kuchukulla M, Boison D, Engel T (2021) ATP and adenosine — Two players in the control of seizures and epilepsy development. Prog Neurobiol 204: 102105. https://doi.org/10.1016/j.pneurobio.2021.102105
- Rodriguez-Alvarez N, Jimenez-Mateos EM, Engel T, Quinlan S, Reschke CR, Conroy RM, Bhattacharya A, Boylan GB, Henshall DC (2017) Effects of P2X7 receptor antagonists on hypoxia-induced neonatal seizures in mice. Neuropharmacology 116: 351–363. https://doi.org/10.1016/j.neuropharm.2017.01.005
- Engel T (2023) The P2X7 Receptor as a Mechanistic Biomarker for Epilepsy. Int J Mol Sci 24(6): 5410. https://doi.org/10.3390/ijms24065410
- Del Puerto A, Wandosell F, Garrido JJ (2013) Neuronal and glial purinergic receptors functions in neuron development and brain disease. Front Cell Neurosci 7: 197. https://doi.org/10.3389/fncel.2013.00197
Қосымша файлдар
