Some electrochemical phenomena accompanying destruction of nanocluster polyoxomolybdate Mo132

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

During thermodestruction of keplerate-type nanocluster polyoxometallate (POM) Mo132 in the solid state, there were electric charges in the samples due to the release of amphiphilic ionized molecular particles into the environment. The sample-ground potential difference reached 100 and more volts, and the sign of the charge was determined by the presence or absence of the moderate electromagnetic field. In the course of studying the photodegradation of POM Mo132 in aqueous solutions, an electrochemical phenomenon such as the occurrence of photovoltaic potential difference between the electrodes placed in the solution from the top and bottom is observed. The fluctuations of the potential difference due to the processes of polarization/depolarization of the near-electrode zones caused by different diffusion rates of counterions from the upper and lower parts of the solution are also found.

Full Text

Restricted Access

About the authors

A. A. Ostroushko

Ural Federal University named after the first President of Russia B. N. Yeltsin

Author for correspondence.
Email: alexander.ostroushko@urfu.ru
Russian Federation, Ekaterinburg

I. D. Gagarin

Ural Federal University named after the first President of Russia B. N. Yeltsin

Email: alexander.ostroushko@urfu.ru
Russian Federation, Ekaterinburg

A. E. Permyakova

Ural Federal University named after the first President of Russia B. N. Yeltsin

Email: alexander.ostroushko@urfu.ru
Russian Federation, Ekaterinburg

References

  1. Pope M.T. Heteropoly and Isopoly Oxometalates, Springer Berlin Heidelberg: Berlin, Heidelberg, 1983. 180 p. https://doi.org/10.1007/978-3-662-12004-0
  2. Kurth D.G., Lehmann P., Volkmer D. et al. // Dalton Trans. 2000. № 21. P. 3989. https://doi.org/10.1039/b003331f
  3. Zhou Y., Chen G., Long Z., Wang J. // RSC Adv. 2014. V. 79. № 4. Р. 42092. https://doi.org/10.1039/C4RA05175K
  4. Müller A., Gouzerh P. // Chem. Soc. Rev. 2012. V. 41. № 22. P. 7431. https://doi.org/0.1039/c2cs35169b
  5. Jalilian F., Yadollahi B., Farsani M. et al. // Catal. Commun. 2015. V. 66. P. 107. https://doi.org/10.1016/j.catcom.2015.03.032
  6. Besson C., Schmitz S., Capella K.M. et al. // Dalton Trans. 2012. V. 41. P. 9852. https://doi.org/10.1039/c2dt30502j
  7. Panagiotopoulos A., Douvas A., Argitis P., Coutsolelos A. // ChemSusChem. 2016. № 9. V. 22. P. 3213. https://doi.org/10.1002/cssc.201600995
  8. Kopilevich S., Gil A., Garcia-Ratés M. et al. // J. Am. Chem. Soc. 2012. V. 134. P. 13082. https://doi.org/10.1021/ja304513t
  9. Davoodnia A., Nakhaei A. // Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2016. V. 46. № 7. P. 1073. https://doi.org/10.1080/15533174.2015.1004419
  10. Elistratova J., Akhmadeev B., Gubaidullin A. et al. // New J. Chem. 2017. V. 41. P. 5271. https://doi.org/10.1039/c7nj01237c
  11. Garazhian Z., Rezaeifard A., Jafarpour M. // RSC Adv. 2019. № 9. V. 60. Р. 34854. https://doi.org/10.1039/C9RA06581D
  12. Popa A.M., Hu L., Crespy D. et al. // J. of Membrane Science. 2011. V. 373. № 1–2. P. 196. https://doi.org/10.1016/j.memsci.2011.03.015
  13. Mokhtari R., Rezaeifard A., Jafarpour M., Farrokh A. // Catal. Sci. Technol. 2018. V. 18. № 8. P. 4645. https://doi.org/10.1039/C8CY00603B
  14. Ostroushko A.A., Vazhenin V.A., Tonkushina M.O. // Russ. J. Inorg. Chem. 2017. V. 62. № 4. P. 483. https://doi.org/10.1134/S0036023617040131 [Остроушко А.А., Важенин В.А., Тонкушина М.О. // Журн. неорган. химии. 2017. Т. 62. № 4. С. 483. https://doi.org/10.7868/S0044457X17040134]
  15. Ostroushko A.A., Tonkushina M.O., Safronov A.P. et al. // Russ. J. Appl. Chem. 2010. V. 83. № 2. P. 332. https://doi.org/10.1134/S107042721002028X [Остроушко А.А., Тонкушина М.О., Сафронов А.П. и др. // Журн. прикл. хим. 2010. Т. 83. № 2. С. 334.]
  16. Jalilian F., Yadollahi B., Farsani M. et al. // RSC Adv. 2015. № 5. V. 86. Р. 70424. https://doi.org/10.1039/C5RA12488C
  17. Mouanni S., Amitouche D., Mazari T., Rabia C. // Appl. Petrochem. Res. 2019. V. 9. № 2. P. 67. https://doi.org/10.1007/s13203-019-0226-0
  18. Ostroushko A.A., Gagarin I.D., Grzhegorzhevskii K.V. et al. // J. Mol. Liq. 2019. V. 301. Р. 110910. https://doi.org/10.1134/S0036023617040131
  19. Rezaeifard A., Haddad R., Jafarpour M., Hakimi M. // J. Am. Chem. Soc. 2013. V. 135. № 27. Р. 10036. https://doi.org/10.1021/ja405852s
  20. Ostroushko A.A., Gagarin I.D., Danilova I.G., Gette I.F. // Nanosystems: Physics, Chemistry, Mathematics. 2019. V. 10. № 3. P. 318. https://doi.org/10.17586/2220-8054-2019-10-3-318-349
  21. Rezaeifard A., Jafarpour M., Haddad R. et al. // J. Clust. Sci. 2015. V. 26. № 5. P. 1439. https://doi.org/10.1007/s10876-015-0876-82018
  22. Grzhegorzhevskii K.V., Shevtsov N.S., Abushaeva A.R. et al. // Russ. Chem. Bull. 2020. V. 69. № 4. P. 804. https://doi.org/10.1007/s11172-020-2836-1 [Гржегоржевский К.В., Шевцев Н.С., Абушаева А.Р. и др. // Изв. Академии наук. Сер. Хим. 2020. Т. 69. № 4. C. 804–814. https://doi.org/10.1007/s11172-020-2836-1]
  23. Shimoda K., Ishikawa S., Tashiro M. et al. // Inorg. Chem. 2020. V. 59. № 8. Р. 5252. https://doi.org/10.1021/acs.inorgchem.9b03713
  24. Grzhegorzhevskii K.V., Tonkushina M.O., Fokin A.V. et al. // Dalton Trans. 2019. V. 48. P. 6984. https://doi.org/10.1039/c8dt05125a
  25. Ishikawa S., Zhang Z., Ueda W. // ACS Catal. 2018. V. 8. № 4. Р. 2935. https://doi.org/10.1021/acscatal.7b02244
  26. Arefian M., Mirzaei M., Eshtiagh-Hosseini H., Frontera A. // Dalton Trans. 2017. V. 46. P. 6812. https://doi.org/10.1039/c7dt00894e
  27. Farhadi S., Babazadeh Z., Maleki M. // Acta Chim. Slov. 2006. V. 53. P. 72.
  28. Yamase T., Kurozumi T. // Dalton Trans. 1983. P. 2205. https://doi.org/10.2741/1156
  29. Boggs B.K., King R.L., Botte G.G. // Chem. Commun. 2009. P. 4859. https://doi.org/10.1039/b905974a
  30. Umer M., Brandoni C., Tretsiakova S. et al. // Results in Engineering. 2024. V. 23. 102803. https://doi.org/10.1016/j.rineng.2024.102803
  31. Андреев В.Н., Никитин С.Е., Климов В.А. и др. // Физика твердого тела. 1999. Т. 41. № 7. С. 1323.
  32. Andreev V.N., Chudnovskii F.A., Nikitin S.E., Kozyrev S.V. // Mol. Mat. 1998. V. 11. P. 139.
  33. Müller A., Krickemeyer E., Bögge H. et al. // Angew. Chem. Int. Ed. 1998. V. 37. № 24. P. 3359. https://doi.org/10.1002/(SICI)1521-3773(19981231)37:24<3359:: AID-ANIE3359>3.0.CO;2-J
  34. Müller A., Fedin V.P., Kuhlmann C. et al. // Chem. Commun. 1999. № 10. P. 927.
  35. Ostroushko A.A., Ulitko M.V., Tonkushina M.O. et al. // Nanotechnologies in Russia. 2018. V. 13. № 1–2. P. 1. https://doi.org/10.1134/S199507801801010X [Остроушко А.А., Улитко М.В., Тонкушина М.О. и др. // Российские нанотехнологии. 2018. Т. 13. Вып. 1–2. С. 3.]
  36. Ostroushko A.A., Gette I.F., Brilliant S.A., Danilova I.G. // Nanotechnologies in Russia. 2019. V. 14. № 3–4. P. 159. https://doi.org/10.1134/S1995078019020101 [Остроушко А.А., Гетте И.Ф., Бриллиант С.А., Данилова И.Г. // Российские нанотехнологии. 2019. 14. № 3–4. C. 75. https://doi.org/10.21517/1992-7223-2019-3-4-75-80]
  37. Ostroushko A.A., Tonkushina M.O., Safronov A.P. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 2. P. 172. https://doi.org/10.1134/S003602360902002 [Остроушко А.А., Тонкушина М.О., Сафронов А.П. и др. // Журн. неорган. химии. 2009. Т. 54. № 2. С. 204.]
  38. Ostroushko A.A., Russkikh O.V., Maksimchuk T.Yu. // Ceram. Int. 2021. V. 47. № 15. P. 21905. https://doi.org/10.1016/j.ceramint.2021.04.208
  39. Ostroushko A.A., Maksimchuk T.Yu., Permyakova A.E., Russkikh O.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 6. P. 799. https://doi.org/10.1134/S0036023622060171 [Остроушко А.А., Максимчук Т.Ю., Пермякова А.Е., Русских О.В. // Журн. неорган. хим. 2022. Т. 67. № 6. С. 727. https://doi.org/10.31857/S0044457X22060186]
  40. Niu J., You X., Duan C. // Inorg. Chem. 1996. V. 35. № 14. P. 4211. https://doi.org/10.1021/ic951458i
  41. Андреев В.Н., Никитин С.Е., Климов В.А. и др. // Физика твердого тела. 1999. Т. 41. № 7. С. 1323.
  42. Andreev V.N., Chudnovskii F.A., Nikitin S.E., Kozyrev S.V. // Mol. Mat. 1998. V. 11. P. 139–142.
  43. Андреев В.Н., Никитин С.Е., Климов В.А. и др. // Физика твердого тела. 2001. Т. 43. № 4. C. 755.
  44. Ostroushko A.A., Sennikov M.Yu., Sycheva N.S. // Russ. J. Inorg. Chem. 2005. V. 50. № 7. P. 1050. [Остроушко А.А., Сенников М.Ю., Сычева Н.С. // Журн. неорган. химии. 2005. Т. 50. № 7. С. 1138.]
  45. Ostroushko A.A., Sennikov M.Yu. // Russ. J. Phys. Chem. A. 2009. V. 83. № 1. P. 111. [Остроушко А.А., Сенников М.Ю. // Журн. физ. химии. 2009. Т. 83. № 1. С. 127.]
  46. Ostroushko A.A. // Russ. J. Inorg. Chem. 2015. V. 60. № 3. P. 387. https://doi.org/10.1134/S0036023615030158 [Остроушко А.А. // Журн. неорган. химии. 2015. Т. 60. № 3. С. 440. https://doi.org/10.7868/S0044457X15030150]
  47. Ostroushko A.A., Grzhegorzhevskii K.V., Medvedeva S.Y. et al. // Nanosystems: Physics, Chemistry, Mathematics. 2021. V. 12. № 1. P. 81. https://doi.org/10.17586/2220-8054-2021-12-1-81-112
  48. Tereshchenko K.A., Shiyan D.A., Grzhegorzhevskii K.V. et al. // J. Struct. Chem. 2022. V. 63. № 12. P. 2004. [Терещенко К.А., Шиян Д.А., Гржегоржевский К.В. и др. // Журн. структур. химии. 2022. Т. 63. № 12. 103434. https://doi.org/10.26902/JSC_id103434]
  49. Müller A., Sarkar S., Shah S.Q.N. et al. // Angew. Chem. Int. Ed. Eng. 1999. V. 38. P. 3238.
  50. Ostroushko A.A., Gagarin I.D., Kudyukov E.V. et al. // Nanosystems: Physics, Chemistry, Mathematics. 2023. V. 14. № 5. P. 571. https://doi.org/10.17586/2220-8054-2023-14-5-571-583
  51. Ostroushko A.A., Tonkushina M.O. // Russ. J. Phys. Chem. A. 2016. V. 90. № 2. P. 436. https://doi.org/10.1134/S0036024416020229 [Остроушко А.А., Тонкушина М.О. // Журн. физ. химии. 2016. Т. 90. № 2. C. 256. https://doi.org/10.7868/S0044453716020229]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Time evolution of the earth-precursor potential difference for Mo132 POM samples: a – heating using an alcohol lamp (blank experiment results are shown by a dotted line); b – heating in an electromagnetic field (electric hotplate), blank experiment – ​​lower curve.

Download (232KB)
3. Fig. 2. Change in time of the potential difference between electrodes placed in the upper and lower parts of the POM solution, when exposed to light from above, τ is the duration of irradiation.

Download (104KB)
4. Fig. 3. Time dependence of the pH level of an aqueous solution of POM Mo132 under the influence of light.

Download (101KB)

Copyright (c) 2025 Russian Academy of Sciences