Об интегральном тождестве и оценке отклонения приближенных решений для бигармонической задачи с препятствием

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе показано, что интегральное тождество, полученное в работе Д.Е. Апушкинской и С.И. Репина для приближенных решений бигармонической задачи с препятствием, удовлетворяющих поточечному ограничению на вторую дивиргенцию, справедливо для произвольных приближенных решений. С помощью этого результата получена новая оценка меры отклонения приближенных решений от точных в случае, когда приближенные решения не удовлетворяют поточечному ограничению на вторую дивиргенцию. Библ. 5.

Об авторах

К. О. Бесов

Математический институт им. В.А. Стеклова РАН; Институт математики и математического моделирования Министерства образования и науки Республики Казахстан

Автор, ответственный за переписку.
Email: kbesov@mi-ras.ru
Россия, 119991, Москва, ул. Губкина 8; Казахстан, 050010, Алматы, ул. Пушкина, 125

Список литературы

  1. Апушкинская Д.Е., Репин С.И. Бигармоническая задача с препятствием: гарантированные и вычисляемые оценки ошибок для приближенных решений // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 11. С. 1881–1897.
  2. Caffarelli L.A., Friedman A. The obstacle problem for the biharmonic operator // Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 1979. V. 6. P. 151–184.
  3. Frehse J. On the regularity of the solution of the biharmonic variational inequality // Manuscr. Math. 1973. V. 9. P. 91–103.
  4. Стейн И.М. Сингулярные интегралы и дифференциальные свойства функций. М.: Мир, 1973.
  5. Scherfgen D. Integral calculator. https://www.integral-calculator.com.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© К.О. Бесов, 2023