Non-associative learning (habituation) in normotensive and hypertensive rats and the effects of social isolation
- Авторлар: Nedogreeva O.A.1, Manolova A.O.1, Mamedova D.I.1, Gulyaeva N.V.1, Stepanichev M.Y.1
-
Мекемелер:
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
- Шығарылым: Том 75, № 3 (2025)
- Беттер: 355–370
- Бөлім: ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПОВЕДЕНИЯ ЖИВОТНЫХ: ВОСПРИЯТИЕ ВНЕШНИХ СТИМУЛОВ, ДВИГАТЕЛЬНАЯ АКТИВНОСТЬ, ОБУЧЕНИЕ И ПАМЯТЬ
- URL: https://edgccjournal.org/0044-4677/article/view/685030
- DOI: https://doi.org/10.31857/S0044467725030079
- ID: 685030
Дәйексөз келтіру
Аннотация
Social isolation is a mild stressor and prolonged exposure to this stressor leads to the development of mental disorders and an increase in mortality from various causes, especially in the group of older people. In animals, social isolation also has a stressful effect. In the present study we investigated the effect of long-term isolation on non-associative learning in outbred Wistar rats and genetically related normotensive rats of the WKY strain and spontaneously hypertensive rats of the SHR strain. Nine-ten-month-old male rats were used for the study. Some animals were placed in individual cages, and the other part was left in home cages under group maintenance. Non-associative learning (habituation) was studied in the “open field” test. Short-term habituation was assessed using indices of locomotor activity and the number of rearing during the first session. Long-term habituation was assessed after a repeated test performed 96 h later on. It was found that in Wistar rats, isolation disrupted both short-term and long-term habituation. In WKY rats, short-term habituation was observed, and long-term habituation was impaired. In SHR rats, non-associative learning was completely disrupted. Prolonged isolation did not have a significant effect on the behavioral indices studied in WKY and SHR rats. Thus, hypertension in SHR rats was accompanied by an impairment of non-associative learning. Isolation caused disruption of non-associative learning in Wistar control rats, but did not affect this type of learning in rats of genetically related WKY and SHR strains.
Толық мәтін

Авторлар туралы
O. Nedogreeva
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: nedogreeva@ihna.ru
Ресей, Moscow
A. Manolova
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Email: nedogreeva@ihna.ru
Ресей, Moscow
D. Mamedova
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Email: nedogreeva@ihna.ru
Ресей, Moscow
N. Gulyaeva
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Email: nedogreeva@ihna.ru
Ресей, Moscow
M. Stepanichev
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Email: nedogreeva@ihna.ru
Ресей, Moscow
Әдебиет тізімі
- Бахарев И.В. Динамика некоторых морфологических и функциональных показателей крыс при длительной гипокинезии на фоне введения фитоэкдистерона. Астраханский мед. журн. 2013. 8(1): 36–38.
- Боголепова Н.Н. Когнитивные функции и социальная изоляция. Поведенческая неврология. 2021. 2: 8–13.
- Горная О.И. Изменение двигательной активности животных с разным профилем моторной асимметрии в условиях нормы и гипокинетического стресса. Ученые записки Таврического нац. ун-та им. В.И. Вернадского. Сер. «Биол., химия». 2013. Том 26 (65) (2): 25–33.
- Добромыслова О.П., Покровская Л.А., Левшин С.А. Особенности гемодинамики при различных моделях экспериментальной гипокинезии. Косм. биол. авиакосм. мед. 1983. 17(3): 45–48.
- Крупина Н., Ширенова С. Нарушения когнитивных функций при длительной социальной изоляции: результаты исследований на людях и экспериментов на животных. Успехи физиол. наук. 2023. 54 (4): 18–35.
- Лобов Г.И. Социальная изоляция: связь с заболеваниями сердечно-сосудистой системы. Успехи физиол. наук. 2024. 55 (1): 31–46.
- Мальцева Н.Г., Кузнецова Т.Г. Влияние гипокинезии на структуру миокарда. Проблемы здоровья и экологии. 2008. 2(16): 113-118.
- Недогреева О.А., Степаничев М.Ю., Гуляева Н.В. Удаление обонятельных луковиц у мышей приводит к изменениям эмоционального поведения. Журн. высш. нерв. деят. им. И.П. Павлова. 2020. 70 (1): 104–114.
- Паршин П.А., Востроилова Г.А., Хохлова Н.А., Чаплыгина Ю.А. Метаболический статус белых крыс при гипокинезии и его фармакокоррекция аминоселетоном. Вет. патол. 2019. 4(70): 49-54.
- Соколов Е.Н. Восприятие и условный рефлекс. М.: Изд-во Московского ун-та, 1958.
- Соколов Е.Н. Нейронные механизмы памяти и обучения. М: Наука, 1981. 140 с.
- Степаничев М.Ю., Тишкина А.О., Новикова М.Р., Левшина И.П., Пискунов А.К., Лазарева Н.А., Гуляева Н.В. Эффекты хронического комбинированного стресса: изменения поведения крыс с разной реакцией на новизну. Журн. высш. нерв. деят. им. И.П. Павлова. 2016. 66 (5): 611–625. https://doi.org/10.7868/S0044467716050105
- Тезов А.А., Киселев В.И., Куликов В.П. Особенности влияния гипокинезии на сердечную деятельность у крыс с высокой и низкой спонтанной двигательной активностью. Авиакосм. экол. мед. 1992. 26(2): 46–49.
- Хлебникова Н.Н., Медведева Ю.С., Крупина Н.А. Ранняя социальная изоляция, вызывающая эмоционально-мотивационные нарушения у крыс, сопровождается дефицитом кратковременного привыкания, но не влияет на пространственную память. Журн. высш. нерв. деят. им. И.П. Павлова. 2018. 68 (5): 646–662.
- Шмаков Д.Н., Нужный В.П., Киблер Н.А., Харин С.Н. Изменения содержания общего холестерина и частоты сердечных сокращений у крыс нормотензивных и гипертензивных линий при сочетанном влиянии холодовых воздействий и гипокинезии. Бюлл. эксперим. биол. мед. 2020. 169(6): 677–681.
- Aoki M., Shimozuru M., Kikusui T., Takeuchi Y., Mori Y. Sex differences in behavioral and corticosterone responses to mild stressors in ICR mice are altered by ovariectomy in peripubertal period. Zoolog Sci. 2010 27(10): 783–789. doi: 10.2108/zsj.27.783.
- Čater M., Majdič G. How early maternal deprivation changes the brain and behavior? Eur. J. Neurosci. 2022. 55 (9–10): 2058–2075. https://doi.org/10.1111/ejn.15238
- Courtin E., Knapp M. Social isolation, loneliness and health in old age: a scoping review. Health Soc. Care Comm. 2017. 25 (3): 799–812. https://doi.org/10.1111/hsc.12311
- Daenen E.W., Van der Heyden J.A., Kruse C.G., Wolterink G., Van Ree J.M. Adaptation and habituation to an open field and responses to various stressful events in animals with neonatal lesions in the amygdala or ventral hippocampus. Brain Res. 2001. 918 (1–2): 153–165. https://doi.org/10.1016/s0006-8993(01)02987-0
- Denver P., D’Adamo H., Hu S., Zuo X., Zhu C., Okuma C., Kim P., Castro D., Jones M.R., Leal C., Mekkittikul M., Ghadishah E., Teter B., Vinters H.V., Cole G.M., Frautschy S.A. A novel model of mixed vascular dementia incorporating hypertension in a rat model of Alzheimer’s disease. Front. Physiol. 2019 10: 1269. doi: 10.3389/fphys.2019.01269.
- Eisenberger N.I. The pain of social disconnection: examining the shared neural underpinnings of physical and social pain. Nat. Rev. Neurosci. 2012. 13 (6): 421–434. https://doi.org/10.1038/nrn3231
- Ferreira de Sá N., Camarini R., Suchecki D. One day away from mum has lifelong consequences on brain and behaviour. Neuroscience. 2023. 525: 51–66. https://doi.org/10.1016/j.neuroscience.2023.06.013
- Ferreira J.S., Leite Junior J.B., de Mello Bastos J.M., Samuels R.I., Carey R.J., Carrera M.P. A new method to study learning and memory using spontaneous locomotor activity in an open-field arena. J. Neurosci. Meth. 2022. 366: 109429. https://doi.org/10.1016/j.jneumeth.2021.109429
- Freis E.D., Ragan D. Effect of treatment on longevity in spontaneously hypertensive rats. Proc. Soc. Exp. Biol. Med. 1975. 150:422–424. https://doi.org/10.3181/00379727-150-39048
- Gong W.-G., Wang Y.-J., Zhou H., Li X.-L., Bai F., Ren Q.-G., Zhang Z.-J. Citalopram ameliorates synaptic plasticity deficits in different cognition-associated brain regions induced by social isolation in middle-aged rats. Mol. Neurobiol. 2017. 54 (3): 1927–1938. https://doi.org/10.1007/s12035-016-9781-x
- Gungor Aydin A., Adiguzel E. The mesocortical dopaminergic system cannot explain hyperactivity in an animal model of attention deficit hyperactivity disorder (ADHD)- Spontaneously hypertensive rats (SHR). Lab. Animal Res. 2023. 39 (1): 20. https://doi.org/10.1186/s42826-023-00172-5
- Ieraci A., Mallei A., Popoli M. Social isolation stress induces anxious-depressive-like behavior and alterations of neuroplasticity-related genes in adult male mice. Neural Plasticity. 2016. 2016: 6212983. https://doi.org/10.1155/2016/6212983
- Ioannou A., Anastassiou-Hadjicharalambous X. Non-associative Learning. In Encyclopedia of Evolutionary Psychological Science. Springer Intl. Publ. 2018: 1–13 pp. https://doi.org/10.1007/978-3-319-16999-6_1027-1
- Johnson A.C. Hippocampal vascular supply and its role in vascular cognitive impairment. Stroke. 2023. 54 (3): 673–685. https://doi.org/10.1161/STROKEAHA.122.038263
- Johnson A.C., Miller J.E., Cipolla M.J. Memory impairment in spontaneously hypertensive rats is associated with hippocampal hypoperfusion and hippocampal vascular dysfunction. J. Cerebral Blood Flow Metab. 2020. 40 (4): 845–859. https://doi.org/10.1177/0271678X19848510
- Kantak K.M. Rodent models of attention-deficit hyperactivity disorder: An updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav. 2022 216: 173378. doi: 10.1016/j.pbb.2022.173378
- Karska J., Pszczołowska M., Gładka A., Leszek J. Correlations between dementia and loneliness. Int. J. Mol. Sci. 2024. 25 (1): 271. https://doi.org/10.3390/ijms25010271
- Koundal S., Liu X., Sanggaard S., Mortensen K., Wardlaw J., Nedergaard M., Benveniste H., Lee H. Brain morphometry and longitudinal relaxation time of spontaneously hypertensive rats (shrs) in early and intermediate stages of hypertension investigated by 3D VFA-SPGR MRI. Neuroscience. 2019. 404: 14–26. https://doi.org/10.1016/j.neuroscience.2019.01.030
- Leussis M.P., Bolivar V.J. Habituation in rodents: A review of behavior, neurobiology, and genetics. Neurosci. Biobehav. Rev. 2006. 30 (7): 1045–1064. https://doi.org/10.1016/j.neubiorev.2006.03.006
- Lyons-Ruth K., Chasson M., Khoury J., Ahtam B. Reconsidering the nature of threat in infancy: Integrating animal and human studies on neurobiological effects of infant stress. Neurosci. Biobehav. Rev. 2024. 163: 105746. https://doi.org/10.1016/j.neubiorev.2024.105746
- Ma R., Mann F., Wang J., Lloyd-Evans B., Terhune J., Al-Shihabi A., Johnson S. The effectiveness of interventions for reducing subjective and objective social isolation among people with mental health problems: a systematic review. Soc. Psychiatry Psychiatr. Epidemiol. 2020. 55 (7): 839–876. https://doi.org/10.1007/S00127-019-01800-Z
- Magalhães D.M., Mampay M., Sebastião A.M., Sheridan G.K., Valente C.A. Age-related impact of social isolation in mice: Young vs middle-aged. Neurochem. Int. 2024. 174: 105678. doi: 10.1016/j.neuint.2024.105678.
- Meneses A., Perez-Garcia G., Ponce-Lopez T., Tellez R., Gallegos-Cari A., Castillo C. Spontaneously hypertensive rat (SHR) as an animal model for ADHD: a short overview. Rev. Neurosci. 2011. 22 (3): 365–371. https://doi.org/10.1515/RNS.2011.024
- Okamoto K., Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J. 1963 27: 282–293. https://pubmed.ncbi.nlm.nih.gov/13939773.
- Okamoto K., Tabei R., Fukushima M., Nosaka S., Yamori Y., Ichijima K., Haebara H., Matsumoto M., Maruyama T., Suzuki Y., Tamegai M. Further observations of the development of a strain of spontaneously hypertensive rats. Jpn. Circ. J. 1966 30: 703–716. https://pubmed.ncbi.nlm.nih.gov/6012808/.
- O’Keefe J., Nadel L. The hippocampus as a cognitive map. Oxford: Clarendon Press; Oxford Univ. Press, 1978.
- Ong A.D., Uchino B.N., Wethington E. Loneliness and health in older adults: a mini-review and synthesis. Gerontology. 2016. 62 (4): 443–449. https://doi.org/10.1159/000441651
- Pietranera L., Brocca M.E., Roig P., Lima A., Garcia-Segura L.M., De Nicola A.F. Estrogens are neuroprotective factors for hypertensive encephalopathy. J. Steroid Biochem. Mol. Biol. 2015. 146: 15–25. https://doi.org/10.1016/j.jsbmb.2014.04.001
- Platel A., Jalfre M., Pawelec C., Roux S., Porsolt R.D. Habituation of exploratory activity in mice: effects of combinations of piracetam and choline on memory processes. Pharmacol. Biochem. Behav. 1984. 21 (2): 209–212. https://doi.org/10.1016/0091-3057(84)90216-8
- Platel A., Porsolt R.D. Habituation of exploratory activity in mice: a screening test for memory enhancing drugs. Psychopharmacology. 1982. 78 (4): 346–352. https://doi.org/10.1007/BF00433739
- Prut L., Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 2003. 463 (1–3): 3–33. https://doi.org/10.1016/s0014-2999(03)01272-x
- Redei E.E., Udell M.E., Solberg Woods L.C., Chen H. The Wistar Kyoto rat: a model of depression traits. Curr. Neuropharmacol. 2023. 21 (9): 1884–1905. https://doi.org/10.2174/1570159X21666221129120902
- Regan S.L., Williams M.T., Vorhees C.V. Review of rodent models of attention deficit hyperactivity disorder. Neurosci. Biobehav. Rev. 2022. 132: 621–637. https://doi.org/10.1016/j.neubiorev.2021.11.041
- Ronchetti S., Labombarda F., Roig P., De Nicola A.F., Pietranera L. Beneficial effects of the phytoestrogen genistein on hippocampal impairments of spontaneously hypertensive rats (SHR). J. Neuroendocrinol. 2023. 35 (1): e13228. https://doi.org/10.1111/jne.13228
- Sabbatini M., Baldoni E., Cadoni A., Vitaioli L., Zicca A., Amenta F. Forebrain white matter in spontaneously hypertensive rats: a quantitative image analysis study. Neurosci. Lett. 1999. 265 (1): 5–8. https://doi.org/10.1016/s0304-3940(99)00151-2
- Sabbatini M., Catalani A., Consoli C., Marletta N., Tomassoni D., Avola R. The hippocampus in spontaneously hypertensive rats: an animal model of vascular dementia? Mech. Ageing Devel. 2002. 123 (5): 547–559. https://doi.org/10.1016/s0047-6374(01)00362-1
- Sadile A.G., Luca B. Cioffi A. Long-term habituation to novel environment: amnesic and hypermnesic effects of various post-exposure treatments. In Biological Aspects of Learning, Memory Formation and Ontogeny of the CNS. Berlin, Boston: De Gruyter, 1979. 203–218 pp. https://doi.org/10.1515/9783112610985-025
- Sherman D.W., Alfano A.R., Alfonso F., Duque C.R., Eiroa D., Marrero Y., Muñecas T., Radcliffe-Henry E., Rodriguez A., Sommer C.L. A systematic review of the relationship between social isolation and physical health in adults. Healthcare (Basel, Switzerland). 2024. 12 (11): 1135. https://doi.org/10.3390/healthcare12111135
- Shirenova S., Khlebnikova N., Narkevich V., Kudrin V., Krupina N. Nine-month-long social isolation changes the levels of monoamines in the brain structures of rats: a comparative study of neurochemistry and behavior. Neurochem. Res. 2023. 48 (6): 1755–1774. https://doi.org/10.1007/S11064-023-03858-3
- Stepanichev M.Y., Mamedova D.I., Gulyaeva N.V. Hippocampus under pressure: molecular mechanisms of development of cognitive impairments in SHR rats. Biochemistry (Mosc.). 2024. 89 (4): 711–725. https://doi.org/10.1134/S0006297924040102
- Sturman O., Germain P.L., Bohacek J. Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test. Stress. 2018. 21 (5): 443–452. https://doi.org/10.1080/10253890.2018.1438405
- Tajima A., Hans F.J., Livingstone D., Wei L., Finnegan W., DeMaro, J. Fenstermacher, J. Smaller local brain volumes and cerebral atrophy in spontaneously hypertensive rats. Hypertension (Dallas). 1993. 21 (1): 105–111. https://doi.org/10.1161/01.hyp.21.1.105
- Tayebati S.K., Tomassoni D., Amenta F. Spontaneously hypertensive rat as a model of vascular brain disorder: microanatomy, neurochemistry and behavior. J. Neurol. Sci. 2012. 322: 241–249.
- Thiel C.M., Müller C.P., Huston J.P., Schwarting R.K. High versus low reactivity to a novel environment: behavioural, pharmacological and neurochemical assessments. Neuroscience. 1999. 93 (1): 243–251. https://doi.org/10.1016/s0306-4522(99)00158-x
- Trippodo N.C., Frohlich E.D. Similarities of genetic (spontaneous) hypertension. Man and rat. Circ. Res. 1981. 48: 309–319.
- Tsai M.L., Kozłowska A., Li Y.S., Shen W.L. Huang A.C.W. Social factors affect motor and anxiety behaviors in the animal model of attention-deficit hyperactivity disorders: A housing-style factor. Psychiatry Res. 2017. 254 (160): 290–300. https://doi.org/10.1016/j.psychres.2017.05.008
- van den Buuse M.. Prepulse inhibition of acoustic startle in spontaneously hypertensive rats. Behav. Brain Res. 2004. 154 (2): 331–337. https://doi.org/10.1016/j.bbr.2004.02.021
- Vitale E.M., Smith A.S. Neurobiology of loneliness, isolation, and loss: integrating human and animal perspectives. Front. Behav. Neurosci. 2022. 16: 846315. https://doi.org/10.3389/fnbeh.2022.846315
- Wang J., Lloyd-Evans B., Giacco D., Forsyth R., Nebo C., Mann F., Johnson S. Social isolation in mental health: a conceptual and methodological review. Soc. Psychiatry Psychiatr. Epidemiol. 2017. 52 (12): 1451–1461. https://doi.org/10.1007/s00127-017-1446-1
- Wang Y., Zhang Y., Wang W., Liu X., Chi Y., Lei J., Zhang B., Zhang,T. Effects of circadian rhythm disorder on the hippocampus of SHR and WKY rats. Neurobiol. Learn. Mem. 2020. 168: 107141. https://doi.org/10.1016/j.nlm.2019.107141
- Wright J.W., Murphy E.S., Elijah I.E., Holtfreter K.L., Davis C.J., Olson M.L., Muhunthan K., Harding J.W. Influence of hippocampectomy on habituation, exploratory behavior, and spatial memory in rats. Brain Res. 2004. 1023 (1): 1–14. https://doi.org/10.1016/j.brainres.2004.06.083
- Yoshii T., Oishi N., Sotozono Y., Watanabe A., Sakai Y., Yamada S., Matsuda K.-I., Kido M., Ikoma K., Tanaka M., Narumoto J. Validation of Wistar-Kyoto rats kept in solitary housing as an animal model for depression using voxel-based morphometry. Sci. Rep. 2024. 14 (1): 3601. https://doi.org/10.1038/s41598-024-53103-2
- Zorzo C., Méndez-López M., Méndez M., Arias J.L. Adult social isolation leads to anxiety and spatial memory impairment: Brain activity pattern of COx and c-Fos. Behav. Brain Res. 2019. 365: 170–177. https://doi.org/10.1016/J.BBR.2019.03.011
Қосымша файлдар
