P300 subcomponents in case of overt and covert visual attention

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The connection of P300 subcomponents with visual spatial attention remains obscure. In the experiment conducted in three-stimulus «oddball» paradigm we showed that in case of overt attention P300 resembles P3b – it has a longer peak latency and temporo-parietal source localization (lingual and cingulate gyrus, precuneus). Alternatively, in case of covert attention it has frontal localization and a longer peak latency that is similar to P3a and nP3 subcomponents. Our data clarifies the association between P300 and visual spatial attention and may be useful for optimization of P300-based brain-computer interfaces.

Texto integral

Acesso é fechado

Sobre autores

T. Ponomarev

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: timofeyponomaryov@yandex.ru

Laboratory for neurophysiology and neurocomputer interfaces, department of human and animal physiology, biological faculty

Rússia, Moscow

A. Pronina

Lomonosov Moscow State University

Email: timofeyponomaryov@yandex.ru

Laboratory for neurophysiology and neurocomputer interfaces, department of human and animal physiology, biological faculty

Rússia, Moscow

A. Kaplan

Lomonosov Moscow State University

Email: timofeyponomaryov@yandex.ru

Laboratory for neurophysiology and neurocomputer interfaces, department of human and animal physiology, biological faculty

Rússia, Moscow

Bibliografia

  1. Ганин И.П., Каплан А.Я. Изучение эффектов вариативности потенциалов мозга человека в интерфейсе мозг-компьютер на волне П300.Вестник Российского государственного медицинского университета. 2022. № 2022 (3).
  2. Ганин И.П., Ким С.А., Либуркина С.П., Галкина Н.В., Лужин А.О., Майорова Л.А., Малюкова Н.Г., Шкловский В.М., Каплан А.Я. Набор текста пациентами с постинсультной афазией в комплексе «Нейрочат» на основе технологии интерфейсов мозг-компьютер на волне P300. Журнал высшей нервной деятельности им. И. П. Павлова. 2020. Т. 70. № 4. С. 435–445.
  3. Anton-Erxleben K., Carrasco M. Attentional enhancement of spatial resolution: Linking behavioural and neurophysiological evidence. Nat Rev Neurosci. 2013. V. 14. № 3. P. 188–200.
  4. Arvaneh M., Robertson I.H., Ward T.E. A P300-Based Brain-Computer Interface for Improving Attention.Front Hum Neurosci. 2019. V. 12.
  5. Bachiller A., Romero S., Molina V., Alonso J.F., Mañanas M.A., Poza J., Hornero R. Auditory P3a and P3b neural generators in schizophrenia: An adaptive sLORETA P300 localization approach. Schizophr Res. 2015. V. 169. № 1–3. P. 318–325.
  6. Barry R.J., Steiner G.Z., Blasio F.M. De. Reinstating the Novelty P3. Sci Rep. 2016. V. 6.
  7. Barry R.J., Steiner G.Z., Blasio F.M. De, Fogarty J.S., Karamacoska D., MacDonald B. Components in the P300: Don’t forget the Novelty P3! Psychophysiology. 2020. V. 57. № 7.
  8. Bocquillon P., Bourriez J.L., Palmero-Soler E., Betrouni N., Houdayer E., Derambure P., Dujardin K. Use of swLORETA to localize the cortical sources of target- and distracter-elicited P300 components. Clinical Neurophysiology. 2011. V. 122. № 10. P. 1991–2002.
  9. Brunner P., Joshi S., Briskin S., Wolpaw J.R., Bischof H., Schalk G. Does the «P300» speller depend on eye gaze? J Neural Eng. 2010. V. 7. № 5.
  10. Chica A.B., Bartolomeo P., Lupiáñez J. Two cognitive and neural systems for endogenous and exogenous spatial attention. Behavioural Brain Research. 2013. V. 237. № 1. P. 107–123.
  11. Conroy M.A., Polich J. Normative variation of P3a and P3b from a large sample: Gender, topography, and response time. J Psychophysiol. 2007. V. 21. № 1. P. 22–32.
  12. Corbetta M., Shulman G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002. V. 3. № 3. P. 201–215.
  13. Cycowicz Y.M. Orienting and memory to unexpected and/or unfamiliar visual events in children and adults. Dev Cogn Neurosci. 2019. V. 36.
  14. Debener S., Makeig S., Delorme A., Engel A.K. What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis. Cognitive Brain Research. 2005. V. 22. № 3. P. 309–321.
  15. Dien J., Spencer K.M., Donchin E. Localization of the event-related potential novelty response as defined by principal components analysis. Cognitive Brain Research. 2003. V. 17. № 3. P. 637–650.
  16. Donchin E. Surprise!… Surprise. Psychophysiology. 1981. V. 18. № 5.
  17. Essen D.C. Van. A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. Neuroimage. 2005. V. 28. № 3. P. 635–662.
  18. Gramfort A., Luessi M., Larson E., Engemann D.A., Strohmeier D., Brodbeck C., Parkkonen L., Hämäläinen M.S. MNE software for processing MEG and EEG data. Neuroimage. 2014. V. 86. P. 446–460.
  19. Hajcak G., Foti D. Significance? Significance! Empirical, methodological, and theoretical connections between the late positive potential and P300 as neural responses to stimulus significance: An integrative review. Psychophysiology. 2020. V. 57. № 7.
  20. He B., Lian J., Spencer K.M., Dien J., Donchin E. A cortical potential imaging analysis of the P300 and novelty P3 components. Hum Brain Mapp. 2001. V. 12. № 2. P. 120–130.
  21. Jeon Y.-W., Polich J. P3a from a passive visual stimulus task. Clinical Neurophysiology. 2001. P. 2202–2208.
  22. Kulke L.V., Atkinson J., Braddick O., Lebedev M., König P., Reilly R.B., Danckert J., Brunner P. Neural differences between covert and overt attention studied using EEG with simultaneous remote eye tracking. Front Hum Neurosci. 2016. V. 10. № NOV2016.
  23. Kundu S., Ari S. Brain-Computer Interface Speller System for Alternative Communication: A Review. IRBM. 2022. V. 43. № 4. P. 317–324.
  24. Linden D.E.J. The P300: Where in the brain is it produced and what does it tell us? Neuroscientist. 2005. V. 11. № 6. P. 563–576.
  25. Lindsay G. . Attention in Psychology, Neuroscience, and Machine Learning. Front Comput Neurosci. 2020. V. 14.
  26. Luck S.J., Gaspelin N. How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology. : Blackwell Publishing Inc., 2017. P. 146–157.
  27. Machado S., Arias-Carrión O., Sampaio I., Bittencourt J., Velasques B., Teixeira S., Nardi A.E., Piedade R., Ribeiro P. Source imaging of P300 visual evoked potentials and cognitive functions in healthy subjects. Clin EEG Neurosci. 2014. V. 45. № 4. P. 262–268.
  28. Mazziotta J., Toga A., Evans A., Fox P., Lancaster J., Zilles K., Woods R., Paus T., Simpson G., Pike B., Holmes C., Collins L., Thompson P., MacDonald D., Iacoboni M., Schormann T., Amunts K., Palomero-Gallagher N., Geyer S., Parsons L., Narr K., Kabani N., Goualher G.Le, Boomsma D., Cannon T., Kawashima R., Mazoyer B. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society B: Biological Sciences. 2001. V. 356. № 1412. P. 1293–1322.
  29. MNE Developers. Repairing artifacts with ICA [Электронный ресурс]. URL: https://mne.tools/stable/auto_tutorials/preprocessing/40_artifact_correction_ica.html (дата обращения: 27.04.2023).
  30. Moore T., Zirnsak M. Neural Mechanisms of Selective Visual Attention. Annu Rev Psychol. 2017. V. 68. P. 47–72.
  31. Morishige K.I., Hiroe N., Sato M.A., Kawato M. Common cortical areas have different neural mechanisms for covert and overt visual pursuits. Sci Rep. 2021. V. 11. № 1. P. 13933.
  32. Naser M.Y.M., Bhattacharya S. Towards Practical BCI-Driven Wheelchairs: A Systematic Review Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2023. V. 31. P. 1030–1044.
  33. Nichols T.E., Holmes A.P. Nonparametric Permutation Tests For Functional Neuroimaging: A Primer with Examples. Hum Brain Mapp. 2001. V. 15. № 1–25.
  34. Pascual-Marqui R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods and Findings in Experimental and Clinical Pharmacology. , 2002. P. 5–12.
  35. Pedregosa F., Varoquaux G., Gramfort A., Michel V. and Thirion B., Grisel O., Blondel M., Prettenhofer P. and Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011. V. 12. P. 2825–2830.
  36. Pires G., Nunes U., Castelo-Branco M. GIBS Block Speller: Toward a Gaze-Independent P300-based BCI. 33rd Annual International Conference of the IEEE EMBS. 2011.
  37. Polich J. Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology. 2007. V. 118. № 10. P. 2128–2148.
  38. Polich J. Neuropsychology of P300. The Oxford handbook of event-related potential components. , 2012. P. 207–241.
  39. Polich J., Comerchero M.D. P3a from Visual Stimuli: Typicality, Task, and Topography. Brain Topogr. 2003. V. 15. № 3. P. 141–152.
  40. Seabold S., Perktold J. statsmodels: Econometric and statistical modeling with python. 9th Python in Science Conference, 2010.
  41. Shi C., Liu S., Zhao B., Meng Y., Gong X., Chen X., Tao L. Spatiotemporal Dynamics of Covert Attention With Different Degrees of Central Visual Field Defects: An ERP and sLORETA Study. Invest Ophthalmol Vis Sci. 2022. V. 63. № 4.
  42. Simons R.F., Graham F.K., Miles M.A., Chen X. On the relationship of P3a and the Novelty-P3. Biol Psychol. 2001. V. 56. P. 207–218.
  43. Talairach J., Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-Dimensional proportional system: An approach to cerebral imaging. New York: Thieme Medical Publishers, Inc., 1988.
  44. Treder M.S., Blankertz B. (C)overt attention and visual speller design in an ERP-based brain-computer interface. , 2010. 28 P.
  45. Treder M.S., Schmidt N.M., Blankertz B. Gaze-independent brain-computer interfaces based on covert attention and feature attention. J Neural Eng. 2011. V. 8. № 6.
  46. Verleger R. Effects of relevance and response frequency on P3b amplitudes: Review of findings and comparison of hypotheses about the process reflected by P3b. Psychophysiology. 2020. V. 57. № 7.
  47. Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., Walt S.J. van der, Brett M., Wilson J., Millman K.J., Mayorov N., Nelson A.R. J., Jones E., Kern R., Larson E., Carey C.J., Polat Ilhan, Feng Y., Moore E.W., VanderPlas J., Laxalde D., Perktold J., Cimrman R., Henriksen I., Quintero E.A., Harris C.R., Archibald A.M., Ribeiro A.H., Pedregosa F., Mulbregt P. van. SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat Methods. 2020. V. 17. P. 261–272.
  48. Volpe U., Mucci A., Bucci P., Merlotti E., Galderisi S., Maj M. The cortical generators of P3a and P3b: A LORETA study. Brain Res Bull. 2007. V. 73. № 4–6. P. 220–230.
  49. Wronka E., Kaiser J., Coenen A.M.L. The auditory P3 from passive and active three-stimulus oddball paradigm. Acta Neurobiol Exp. 2008. V. 68. P. 362–372.
  50. Wu T., Mackie M.A., Chen C., Fan J. Representational coding of overt and covert orienting of visuospatial attention in the frontoparietal network. Neuroimage. 2022. V. 261.
  51. Zhang Q., Luo C., Zhang J., Jin Z., Li L. Visual Search P300 Source Analysis Based On ERP-fMRI Integration. 2020.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Experimental design. (а) – stimulation scheme. (б) – variants of visual stimulation. (в) – electrode montage scheme.

Baixar (88KB)
3. Fig. 2. Grand average ERP for each experimental series and stimulus type. (а) – target stimulus, FC channels. (б) – distractor stimulus, FC channels. (в) – standard stimulus, FC channels. (г) – target stimulus, CP channels. (д) – distractor stimulus, CP channels. (е) – standard stimulus, CP channels.

Baixar (186KB)
4. Fig. 3. Statistical analysis results for peak amplitude and latency of the P300 wave. (а) – the impact of series and stimulus type on the amplitude of P300. (б) – the impact of series and stimulus type on the latency of P300. (в) – the impact of series on the amplitude of P300. (г) – the impact of channels group and stimulus type on the amplitude of P300. (д) – the impact of channels group and series on the amplitude of P300. (е) – plot structure. (а), (б) – N = 448. (в) – N = 1344. (г) – N(FC) = 1260, N(CP) = 980. (д) – N(FC) =756, N(CP) = 588. ## – p < 0.01 (between-group difference), * – p < 0.01 (within-group difference), ** – p < 0.0001 (within-group difference), Tukey test. ns – no statistical difference.

Baixar (110KB)
5. Fig. 4. Sources of P300 elicited by target stimulus in overt and covert visual attention.

Baixar (124KB)
6. Fig. 5. The difference in activation of P3a (elicited by distractor) sources and P3b (elicited by target) sources for different series.

Baixar (385KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025