Контроль нарушений адгезии и дефектов, заполненных водой, в многослойных композитах с сотовым заполнителем методом импульсной инфракрасной томографии
- Авторы: Лю Г.1, Гао В.1, Лю В.1, Цзоу С.1, Сюй Ц.1, Лю Т.2
 - 
							Учреждения: 
							
- Харбинский технологический институт
 - Харбинский университет коммерции
 
 - Выпуск: № 5 (2023)
 - Страницы: 45-53
 - Раздел: Статьи
 - URL: https://edgccjournal.org/0130-3082/article/view/649164
 - DOI: https://doi.org/10.31857/S0130308223050056
 - EDN: https://elibrary.ru/ZEFRGM
 - ID: 649164
 
Цитировать
Полный текст
Аннотация
Об авторах
Гозэн Лю
Харбинский технологический институтХарбин, Китай
Вэйчэн Гао
Харбинский технологический институт
														Email: gaoweicheng@sina.com
				                					                																			                												                								Харбин, Китай						
Вэй Лю
Харбинский технологический институтХарбин, Китай
Сюнхуэй Цзоу
Харбинский технологический институтХарбин, Китай
Цзяньсюнь Сюй
Харбинский технологический институтХарбин, Китай
Тао Лю
Харбинский университет коммерцииХарбин, Китай
Список литературы
- Wu X., Li Y., Cai W. et al. Dynamic responses and energy absorption of sandwich panel with aluminium honeycomb core under ice wedge impact // International Journal of Impact Engineering. 2022. V. 162. P. 104137.
 - T�ska V., Chlebeek T., Hnidka J. et al. Testing of the heating element integrated into the honeycomb sandwich structure for active thermography inspection // Journal of Sandwich Structures and Materials. 2021. V. 23. No. 7. P. 3368-3389.
 - Fan T., Zou G. Influences of defects on dynamic crushing properties of functionally graded honeycomb structures // Journal of Sandwich Structures & Materials. 2015. V. 17 (3). P. 295-307.
 - Quattrocchi A., Freni F., Montanini R.Comparison between air-coupled ultrasonic testing and active thermography for defect identification in composite materials // Nondestructive Testing and Evaluation. 2019. P. 1-16.
 - He H., Zhao Y., Lu B. et al. Detection of Debonding Defects Between Radar Absorbing Material and CFRP Substrate by Microwave Thermography // IEEE Sensors Journal. 2022. P. 22.
 - Hu C., Duan Y., Liu S. et al. LSTM-RNN-based defect classification in honeycomb structures using infrared thermography // Infrared Physics & Technology. 2019. V. 102. P. 103032.
 - He Y., Tian G.Y., Pan M. et al. Non-destructive testing of low-energy impact in CFRP laminates and interior defects in honeycomb sandwich using scanning pulsed eddy current // Composites Part B: Engineering. 2014. V. 59. P. 196-203.
 - de Oliveira Bernardo C.F., Nienheysen P., Baldo C.R. et al. Improved impact damage characterisation in CFRP specimens using the fusion of optical lock-in thermography and optical square-pulse shearography images // NDT & E International. 2020. V. 111. P. 102215.
 - Chulkov A.O., Gaverina L., Pradere C. et al. Water detection in honeycomb composite structures using terahertz thermography // Russian Journal of Nondestructive Testing. 2015. V. 51. No. 8. P. 520-523.
 - Song Z., Luong S., Whisler D. et al. Honeycomb core failure mechanism of CFRP/Nomex sandwich panel under multi-angle impact of hail ice // International Journal of Impact Engineering. 2021. V. 150. P. 103817.
 - Wang F., Wang Y., Liu J. et al. Theoretical and experimental study on carbon/epoxy facings-aluminum honeycomb sandwich structure using lock-in thermography // Measurement. 2018. V. 126. P. 110-119.
 - Bu C., Liu T., Li R., Zhao B., Tang Q. Infrared Image Segmentation Algorithm Based on Multi Structure Morphology-Pulse Coupled Neural Network in Application to the Inspection of Aerospace Materials // Russian Journal of Nondestructive Testing. 2021. V. 57. No. 11. P. 1018-1026.
 - Rellinger T., Underhill P.R., Krause T.W. et al.Combining eddy current, thermography and laser scanning to characterize low-velocity impact damage in aerospace composite sandwich panels // NDT & E International. 2021. V. 120. P. 102421.
 - Bu C., Sun Z., Tang Q. et al. Thermography sequence processing and defect edge identification of tbc structure debonding defects detection using long-pulsed infrared wave non-destructive testing technology // Russian Journal of Nondestructive Testing. 2019. V. 55. No. 1. P. 80-87.
 - Bu C., Liu G., Zhang X. et al. Debonding defects detection of FMLs based on long pulsed infrared thermography technique // Infrared Physics & Technology. 2020. V. 104. P. 103074.
 - Vavilov V.P., Kuimova M.V. Dynamic thermal tomography of composites: a comparison of reference and reference-free approaches // Journal of Nondestructive Evaluation. 2019. V. 38. No. 1. P. 1-13.
 - Peng W., Wang F., Liu J. et al. Pulse phase dynamic thermal tomography investigation on the defects of the solid-propellant missile engine cladding layer // International Journal of Thermophysics. 2018. V. 39. P. 1-12.
 - Vavilov V.P., Nesteruk D.A., Shiryaev V.V., Ivanov A.I., Swiderski W. Thermal (infrared) tomography: terminology, principal procedures, and application to nondestructive testing of composite materials // Russian Journal of Nondestructive Testing. 2010. V. 46. No. 3. P. 151-161.
 - Wang F., Liu J., Song P. et al. Multimodal optical excitation pulsed thermography: Enhanced recognize debonding defects of the solid propellant rocket motor cladding layer // Mechanical Systems and Signal Processing. 2022. V. 163. P. 108164.
 - Bu C., Li R., Liu T. et al. Micro-crack defects detection of semiconductor Si-wafers based on Barker code laser infrared thermography // Infrared Physics & Technology. 2022. V. 123. P. 104160.
 
Дополнительные файлы
				
			
						
						
						
					
						
									



