Effect of demineralization on brown coal pyrolysis under laser pulses influence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The formation of pyrolysis gaseous products from initial and demineralized tableted brown coal microparticles under the influence of microsecond laser pulses (1064 nm, 120 μs, 6 Hz, 0.3–1.9 J/cm²) was studied. When the threshold values of the energy density of laser pulses are exceeded, the formation of gases H2, CH4, CO and CO2 begins. Their concentration increases linearly with the growth of the energy density H. The rate of formation of H2 is 3.5 times higher for demineralized samples than for the initial ones.

About the authors

B. P. Aduev

The Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of Sciences

Email: lesinko-iuxm@yandex.ru
Kemerovo, Russia

V. D. Volkov

The Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of Sciences

Kemerovo, Russia

N. V. Nelyubina

The Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of Sciences

Kemerovo, Russia

References

  1. He Q., Gong Y., Ding L. et al. // Energy. 2021. № 229. P. 120724. https://doi.org/10.1016/j.energy.2021.120724
  2. Meshram P., Shina M.K., Sahu S.K., Pandey B.D. // Proc. 16th Intern. Conf. on Non-ferrous metals. New Delhi, 2012. P. 1.
  3. Gulen J. // Energy Sources. Part A: Recovery, Utilization, and Environmental Effects. 2007. P. 231. https://doi.org/10.1080/009083190965514
  4. Filippenko Yu. N., Rudavina E. V., Chernyavsky N. V. // Modern science: collection of scientific articles. 2010. № 1(3). P. 44.
  5. Alekhnovich A.N. // Energetic. 2008. №. 3. P. 8.
  6. Smirnov V.N., Shubin G.A., Arutyunov A.V. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1092. https://doi.org/10.1134/s1990793122060112
  7. Dorofeenko S.O., Polianczyk E.V. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 242. https://doi.org/10.1134/S199079312202004X
  8. Gerasimov G.Ya., Khaskhachikh V.V., Sychev G.A. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1067. https://doi.org/10.1134/s1990793122060045
  9. Tsvetkov M.V., Kislov V.M., Tsvetkova Yu.Yu. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 711. https://doi.org/10.1134/s1990793122040315
  10. Karn F.S., Friedel R.A., Sharkey A.G., Jr. // Carbon. 1967. V. 5. № 1. P. 25. https://doi.org/10.1016/0008-6223(67)90102-9
  11. Shultz J.L., Sharkey A.G., Jr. // Carbon. 1967. V. 5. № 1. P. 57. https://doi.org/10.1016/0008- 6223(67)90106-6
  12. Hanson R.L., Brookins D., Vanderborgh N.E. // Anal. Chem. 1976. V. 48. № 14. P. 2210. https://doi.org/10.1021/ac50008a040
  13. Hanson R.L., Vanderborgh N.E., Brookins D.G. // Anal. Chem. 1977. V. 49. № 3. P. 390. https://doi.org/10.1021/ac50011a016
  14. Stout S.A., Hall K. // J. Anal. Appl. Pyrolysis. 1991. V. 21. № 1–2. P. 195. https://doi.org/10.1016/0165-2370(91)80025-4
  15. Pyatenko A.T., Bukhman S.V., Lebedinskii V. et al. // Fuel. 1992. V. 71. № 6. P. 701. https://doi.org/10.1016/0016-2361(92)90175-N
  16. Maswadeh W., Arnold N.S., McClennen W.H. et al. // Energy Fuels. 1993. V. 7. № 6. P. 1006. https://doi.org/10.1021/ef00042a044
  17. Seyitliyev D., Kholikov K., Grant B. et al. // Int. J. Hydrogen Energy. 2017. V. 42. № 42. P. 26277. https://doi.org/10.1016/j.ijhydene.2017.08.149
  18. Karn F.S., Friedel R.A., Sharkey A.S. // Fuel. 1972. V. 51. № 2. P. 113. https://doi.org/10.1016/0016- 2361(72)90059-2
  19. Li Y., Hua F., An H., Cheng Y. // Fuel. 2021. V. 283. P. 119290. https://doi.org/10.1016/j.fuel.2020.119290
  20. Li C.Z. // Fuel. 2007. V. 86. № 12–13. P. 1664. https://doi.org/10.1016/j.fuel.2007.01.008
  21. Samaras P. // Fuel. 1996. V. 75. № 9. P. 1108. https://doi.org/10.1016/0016-2361(96)00058-0
  22. Dolgaev S.I., Lavrishev S.V., Lyalin A.A. et al. // Appl. Phys. A. 2001. V. 73. P. 177. https://doi.org/10.1007/s003390100530
  23. Young J.F., Sipe J.E., Driel H.M. // Phys. Rev. B. 1984. V. 30. P. 2001. https://doi.org/10.1103/PhysRevB.30.2001
  24. Tomkow K., Sieminiewska T., Jankowska A. et al. // Fuel. 1986. V. 65. № 10. P. 1423. https://doi.org/10.1016/0016-2361(86)90117-1
  25. Qian L., Xue J., Tao C. et al. // Intern. J. Coal Sci. Technol. 2023. V. 10. № 21. P. 20. https://doi.org/10.1007/s40789-023-00576-7
  26. Lin D., Qiu P., Xie X. et al.// Energy Sources, Part A: Recovery, Utilization, And Environmental Effects. 2017. https://doi.org/10.1080/15567036.2017.1403504
  27. Sert M., Ballice L., Yuksel M. et al. // Ind. Eng. Chem. Res. 2011. V. 50. P. 10400. https://doi.org/10.1021/ie2008604
  28. Zhu W., Song W., Lin W. // Energy Fuels. 2008. V. 22. P. 2482. https://doi.org/10.1021/ef800143h
  29. Zhao Y., Zhang W., Wang P. et al. // Intern. J. Hydrogen Energy. 2018. V. 43. P. 10991. https://doi.org/10.1016/j.ijhydene.2018.04.240
  30. Aduev B.P., Nurmukhametov D.R., Nelyubina N.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 361. https://doi.org/10.1134/S1990793123020033
  31. Aduev B.P., Nurmukhametov D.R., Kovalev R.Y. et al. // Optics and Spectroscopy. 2018. V. 125. № 2. С. 293. https://doi.org/10.1134/S0030400X18080039
  32. Aduev B.P., Nurmukhametov D.R., Nelyubina N.V. et al. // J. Appl. Spectrosc. 2021. V. 88. P. 761. https://doi.org/10.1007/s10812-021-01237-w
  33. Kraft Ya.V., Aduev B.P., Nelyubina N.V. et al. // Chemistry for Sustainable Development. 2022. V. 30. № 5. P. 496. https://doi.org/10.15372/CSD2022409
  34. Aduev B.P., Volkov V.D. // Bull. Lebedev Physics Institute. 2024. V. 51. P. S66. https://doi.org/10.3103/S1068335624600116
  35. Song Q., Zhao H., Jia J. et al. // Jia J. Analyt. Appl. Pyrolysis. 2020. V. 145. P. 104716. https://doi.org/10.1016/j.jaap.2019.104716
  36. McKee D.W. // Carbon. 1979. V. 17. P. 419. https://doi.org/10.1016/0008-6223(79)90058-7
  37. Wang Z., Tan J., He Y. et al. // Energy Fuels. 2019. V. 33. P. 9437. https://doi.org/10.1021/acs.energyfuels.9b01342
  38. Sun M., Wang Q., He C. et al. // Fuel. 2019. V. 253. P. 409. https://doi.org/10.1016/j.fuel.2019.04.154
  39. Liu H., Xu L., Zhao D. et al. // Fuel Proc. Technol. 2018. V. 179 P. 399. https://doi.org/10.1016/j.fuproc.2018.07.032
  40. Bulgakov A.V., Bulgakov N.M. // Quantum Electron. 1999. V. 29. P. 433. https://doi.org/10.1070/QE1999v029n05ABEH001503

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences