Effect of demineralization on brown coal pyrolysis under laser pulses influence
- Authors: Aduev B.P.1, Volkov V.D.1, Nelyubina N.V.1
-
Affiliations:
- The Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of Sciences
- Issue: Vol 44, No 10 (2025)
- Pages: 3-15
- Section: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://edgccjournal.org/0207-401X/article/view/692373
- DOI: https://doi.org/10.7868/S3034612625100016
- ID: 692373
Cite item
Abstract
The formation of pyrolysis gaseous products from initial and demineralized tableted brown coal microparticles under the influence of microsecond laser pulses (1064 nm, 120 μs, 6 Hz, 0.3–1.9 J/cm²) was studied. When the threshold values of the energy density of laser pulses are exceeded, the formation of gases H2, CH4, CO and CO2 begins. Their concentration increases linearly with the growth of the energy density H. The rate of formation of H2 is 3.5 times higher for demineralized samples than for the initial ones.
About the authors
B. P. Aduev
The Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of Sciences
Email: lesinko-iuxm@yandex.ru
Kemerovo, Russia
V. D. Volkov
The Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of SciencesKemerovo, Russia
N. V. Nelyubina
The Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of SciencesKemerovo, Russia
References
- He Q., Gong Y., Ding L. et al. // Energy. 2021. № 229. P. 120724. https://doi.org/10.1016/j.energy.2021.120724
- Meshram P., Shina M.K., Sahu S.K., Pandey B.D. // Proc. 16th Intern. Conf. on Non-ferrous metals. New Delhi, 2012. P. 1.
- Gulen J. // Energy Sources. Part A: Recovery, Utilization, and Environmental Effects. 2007. P. 231. https://doi.org/10.1080/009083190965514
- Filippenko Yu. N., Rudavina E. V., Chernyavsky N. V. // Modern science: collection of scientific articles. 2010. № 1(3). P. 44.
- Alekhnovich A.N. // Energetic. 2008. №. 3. P. 8.
- Smirnov V.N., Shubin G.A., Arutyunov A.V. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1092. https://doi.org/10.1134/s1990793122060112
- Dorofeenko S.O., Polianczyk E.V. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 242. https://doi.org/10.1134/S199079312202004X
- Gerasimov G.Ya., Khaskhachikh V.V., Sychev G.A. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1067. https://doi.org/10.1134/s1990793122060045
- Tsvetkov M.V., Kislov V.M., Tsvetkova Yu.Yu. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 711. https://doi.org/10.1134/s1990793122040315
- Karn F.S., Friedel R.A., Sharkey A.G., Jr. // Carbon. 1967. V. 5. № 1. P. 25. https://doi.org/10.1016/0008-6223(67)90102-9
- Shultz J.L., Sharkey A.G., Jr. // Carbon. 1967. V. 5. № 1. P. 57. https://doi.org/10.1016/0008- 6223(67)90106-6
- Hanson R.L., Brookins D., Vanderborgh N.E. // Anal. Chem. 1976. V. 48. № 14. P. 2210. https://doi.org/10.1021/ac50008a040
- Hanson R.L., Vanderborgh N.E., Brookins D.G. // Anal. Chem. 1977. V. 49. № 3. P. 390. https://doi.org/10.1021/ac50011a016
- Stout S.A., Hall K. // J. Anal. Appl. Pyrolysis. 1991. V. 21. № 1–2. P. 195. https://doi.org/10.1016/0165-2370(91)80025-4
- Pyatenko A.T., Bukhman S.V., Lebedinskii V. et al. // Fuel. 1992. V. 71. № 6. P. 701. https://doi.org/10.1016/0016-2361(92)90175-N
- Maswadeh W., Arnold N.S., McClennen W.H. et al. // Energy Fuels. 1993. V. 7. № 6. P. 1006. https://doi.org/10.1021/ef00042a044
- Seyitliyev D., Kholikov K., Grant B. et al. // Int. J. Hydrogen Energy. 2017. V. 42. № 42. P. 26277. https://doi.org/10.1016/j.ijhydene.2017.08.149
- Karn F.S., Friedel R.A., Sharkey A.S. // Fuel. 1972. V. 51. № 2. P. 113. https://doi.org/10.1016/0016- 2361(72)90059-2
- Li Y., Hua F., An H., Cheng Y. // Fuel. 2021. V. 283. P. 119290. https://doi.org/10.1016/j.fuel.2020.119290
- Li C.Z. // Fuel. 2007. V. 86. № 12–13. P. 1664. https://doi.org/10.1016/j.fuel.2007.01.008
- Samaras P. // Fuel. 1996. V. 75. № 9. P. 1108. https://doi.org/10.1016/0016-2361(96)00058-0
- Dolgaev S.I., Lavrishev S.V., Lyalin A.A. et al. // Appl. Phys. A. 2001. V. 73. P. 177. https://doi.org/10.1007/s003390100530
- Young J.F., Sipe J.E., Driel H.M. // Phys. Rev. B. 1984. V. 30. P. 2001. https://doi.org/10.1103/PhysRevB.30.2001
- Tomkow K., Sieminiewska T., Jankowska A. et al. // Fuel. 1986. V. 65. № 10. P. 1423. https://doi.org/10.1016/0016-2361(86)90117-1
- Qian L., Xue J., Tao C. et al. // Intern. J. Coal Sci. Technol. 2023. V. 10. № 21. P. 20. https://doi.org/10.1007/s40789-023-00576-7
- Lin D., Qiu P., Xie X. et al.// Energy Sources, Part A: Recovery, Utilization, And Environmental Effects. 2017. https://doi.org/10.1080/15567036.2017.1403504
- Sert M., Ballice L., Yuksel M. et al. // Ind. Eng. Chem. Res. 2011. V. 50. P. 10400. https://doi.org/10.1021/ie2008604
- Zhu W., Song W., Lin W. // Energy Fuels. 2008. V. 22. P. 2482. https://doi.org/10.1021/ef800143h
- Zhao Y., Zhang W., Wang P. et al. // Intern. J. Hydrogen Energy. 2018. V. 43. P. 10991. https://doi.org/10.1016/j.ijhydene.2018.04.240
- Aduev B.P., Nurmukhametov D.R., Nelyubina N.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 361. https://doi.org/10.1134/S1990793123020033
- Aduev B.P., Nurmukhametov D.R., Kovalev R.Y. et al. // Optics and Spectroscopy. 2018. V. 125. № 2. С. 293. https://doi.org/10.1134/S0030400X18080039
- Aduev B.P., Nurmukhametov D.R., Nelyubina N.V. et al. // J. Appl. Spectrosc. 2021. V. 88. P. 761. https://doi.org/10.1007/s10812-021-01237-w
- Kraft Ya.V., Aduev B.P., Nelyubina N.V. et al. // Chemistry for Sustainable Development. 2022. V. 30. № 5. P. 496. https://doi.org/10.15372/CSD2022409
- Aduev B.P., Volkov V.D. // Bull. Lebedev Physics Institute. 2024. V. 51. P. S66. https://doi.org/10.3103/S1068335624600116
- Song Q., Zhao H., Jia J. et al. // Jia J. Analyt. Appl. Pyrolysis. 2020. V. 145. P. 104716. https://doi.org/10.1016/j.jaap.2019.104716
- McKee D.W. // Carbon. 1979. V. 17. P. 419. https://doi.org/10.1016/0008-6223(79)90058-7
- Wang Z., Tan J., He Y. et al. // Energy Fuels. 2019. V. 33. P. 9437. https://doi.org/10.1021/acs.energyfuels.9b01342
- Sun M., Wang Q., He C. et al. // Fuel. 2019. V. 253. P. 409. https://doi.org/10.1016/j.fuel.2019.04.154
- Liu H., Xu L., Zhao D. et al. // Fuel Proc. Technol. 2018. V. 179 P. 399. https://doi.org/10.1016/j.fuproc.2018.07.032
- Bulgakov A.V., Bulgakov N.M. // Quantum Electron. 1999. V. 29. P. 433. https://doi.org/10.1070/QE1999v029n05ABEH001503
Supplementary files
