Equation of State for Calculating RDX Temperature
- Authors: Biryukova M.A.1, Petrov D.V.1, Kovalev Y.M.2, Shestakov M.A.2
-
Affiliations:
- Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
- South Ural State University (National Research University)
- Issue: Vol 44, No 10 (2025)
- Pages: 16-23
- Section: Combustion, explosion and shock waves
- URL: https://edgccjournal.org/0207-401X/article/view/692374
- DOI: https://doi.org/10.7868/S3034612625100025
- ID: 692374
Cite item
Abstract
In the work on the example of hexogen, an approach to determining the constants in the equation of state of molecular crystals was tested, which allows calculating the isothermal compression pressure. When implementing this approach, an algorithm was proposed to recalculate experimental or calculated data on isothermal compression to the shock adiabat of hexogen, which makes it possible to obtain pressure values at the shock wave front that are in good agreement with known experimental data. When calculating the temperatures of shock-wave compression, an analysis of various models of the dependence of heat capacity at a constant volume on temperature was carried out, which made it possible to significantly simplify the equations of state.
About the authors
M. A. Biryukova
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
Email: bma_vniitf@mail.ru
Snezhinsk, Russia
D. V. Petrov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical PhysicsSnezhinsk, Russia
Y. M. Kovalev
South Ural State University (National Research University)Chelyabinsk, Russia
M. A. Shestakov
South Ural State University (National Research University)Chelyabinsk, Russia
References
- Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Shock-wave phenomena in condensed matter. Moscow: Janus-K, 1996.
- Son E.E. // High Temperature. 2013. V. 51. № 3. P. 351. https://doi.org/10.1134/S0018151X1303005X
- Stankus S.V., Khairulin R.A., Martynets V.G., Bezverkhii P.P. // Ibid. 2013. V. 51. № 5. P. 695. https://doi.org/10.1134/S0018151X13050209
- Nigmatulin R.I., Bolotnova R.Kh. // Ibid. 2017. V. 55. № 2. P. 199. https://doi.org/10.1134/S0018151X17010151
- Bushman A.V., Fortov V.E. // Physics–Uspekhi. 1983. V. 26. № 6. P. 465. https://doi.org/10.1070/PU1983v026n06ABEH004419
- Bushman A.V., Lomonosov I.V., Fortov V.E., Khishenko K.V. // Chem. Phys. Rep. 1994. V. 13. № 1. P. 103.
- Bushman A.V., Lomonosov I.V., Fortov V.E., Khishenko K.V. // Ibid. № 5. P. 890.
- Olinger B, Cady G. Detonation and explosives. Moscow: Mir, 1981.
- Khishenko K.V., Lomonosov I.V., Fortov V.E., Shlensky O.F. // Dokl. Phys. 1996. V. 349. № 3. P. 322.
- Khishenko K.V. // High Temperature. 1997. V. 35. P. 991.
- Bordzilovskii S.A., Karakhanov S.M., Khishchenko K.V. // Combust. Explos. Shock Waves. 2013. V. 49. № 1. P. 121. https://doi.org/10.1134/S0010508213010140
- Khishchenko K.V., Fortov V.E. // Proc. Kabardino-Balkarian State University. 2014. V. IV. P. 6.
- Kovalev Yu.M. // J. Eng. Phys. Thermophys. 2020. V. 93. P. 223.
- Kovalev Yu.M., Pomykalov E.V. // J. Eng. Phys. Thermophys. 2023. V. 96. P. 1052.
- Last Explosive Property Data. Los Alamos Series on Dynamic Material Properties / Eds. Gibbs T.R., Popolato A. Berkeley, Los Angeles, London: University of California Press, 1980. P. 15.
- Winey J. M., Toyoda Y., Gupta Y. M. // J. Appl. Phys. 2022. V. 132. P. 095905.
- Zeldovich Y.B., Reiser Yu.P. Physics of shock waves and high-temperature hydrodynamic phenomena. Moscow: Fizmatlit, 2008.
- Kovalev Yu.M. // J. Eng. Phys. Thermophys. 2018. V. 91. P. 1573.
- Kitaygorodsky A.I. Molecular crystals. Moscow: Science, 1971.
- Kovalev Yu.M. // Dokl. Phys. 2005. V. 403. № 4. P. 475.
- Kovalev Yu.M. // Issues of atomic science and technology. Series: Mathematical modeling of physical processes. 2005. № 2. P. 55.
- Qian-Xuesen. Physical mechanics. Moscow: Mir, 1965.
- Voskoboinikov I.M., Afanasenkov A.N., Bogomolov V.M. // Combust. Explos. Shock Waves. V. 3. P. 359.
- Olinger B., Roof B., Cady H. // Proc. Sympos. (Intern.) on High Dynamic Pressures. Paris: Commissariat a l’Energie Atomique, 1978. P. 3.
- Yoo C.S., Cynn H., Howard W.M., Holmes N. // Proc. 11th Deton. Sympos. (Intern.). Snowmass Village, Co, USA, 1998. P. 951.
- Kozlova S.A., Gubin S.A., Bogdanova Yu.A., Maklashova I.V., Selezenev A.A. // Combust. and Explos. 2017. V. 10. № 3. P. 109.
- Biryukova M.A., Petrov D.V., Kovalev Yu.M., Smirnov E.B. // Combust. Explos. Shock Waves. 2024. V. 60. № 6. P. 764.
- Kovalev Yu.M., Shestakov M.A. // Bull. South Ural State University. Series: Mathematics. Mechanics. Physics. 2024. V. 16. № 2. P. 86.
- Kovalev Yu.M., Kuropatenko V.F. // J. Eng. Phys. Thermophys. V. 91. P. 278.
- Shchetinin V.G. // Combust. Explos. Shock Waves. 1999. V. 35. P. 570.
- Clark T. // Computer chemistry. Moscow: Mir, 1990.
- Stepanov N.F., Novakovskaya Yu.V. // Ros. Chem. J. 2007. Т. LI. № 5. С. 5.
- Voskoboinikov I.M., Voskoboinikova N.F. // Sov. J. Chem. Phys. 1990. V. 7. № 3. P. 648.
Supplementary files
