Equation of State for Calculating RDX Temperature

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the work on the example of hexogen, an approach to determining the constants in the equation of state of molecular crystals was tested, which allows calculating the isothermal compression pressure. When implementing this approach, an algorithm was proposed to recalculate experimental or calculated data on isothermal compression to the shock adiabat of hexogen, which makes it possible to obtain pressure values at the shock wave front that are in good agreement with known experimental data. When calculating the temperatures of shock-wave compression, an analysis of various models of the dependence of heat capacity at a constant volume on temperature was carried out, which made it possible to significantly simplify the equations of state.

About the authors

M. A. Biryukova

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics

Email: bma_vniitf@mail.ru
Snezhinsk, Russia

D. V. Petrov

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics

Snezhinsk, Russia

Y. M. Kovalev

South Ural State University (National Research University)

Chelyabinsk, Russia

M. A. Shestakov

South Ural State University (National Research University)

Chelyabinsk, Russia

References

  1. Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Shock-wave phenomena in condensed matter. Moscow: Janus-K, 1996.
  2. Son E.E. // High Temperature. 2013. V. 51. № 3. P. 351. https://doi.org/10.1134/S0018151X1303005X
  3. Stankus S.V., Khairulin R.A., Martynets V.G., Bezverkhii P.P. // Ibid. 2013. V. 51. № 5. P. 695. https://doi.org/10.1134/S0018151X13050209
  4. Nigmatulin R.I., Bolotnova R.Kh. // Ibid. 2017. V. 55. № 2. P. 199. https://doi.org/10.1134/S0018151X17010151
  5. Bushman A.V., Fortov V.E. // Physics–Uspekhi. 1983. V. 26. № 6. P. 465. https://doi.org/10.1070/PU1983v026n06ABEH004419
  6. Bushman A.V., Lomonosov I.V., Fortov V.E., Khishenko K.V. // Chem. Phys. Rep. 1994. V. 13. № 1. P. 103.
  7. Bushman A.V., Lomonosov I.V., Fortov V.E., Khishenko K.V. // Ibid. № 5. P. 890.
  8. Olinger B, Cady G. Detonation and explosives. Moscow: Mir, 1981.
  9. Khishenko K.V., Lomonosov I.V., Fortov V.E., Shlensky O.F. // Dokl. Phys. 1996. V. 349. № 3. P. 322.
  10. Khishenko K.V. // High Temperature. 1997. V. 35. P. 991.
  11. Bordzilovskii S.A., Karakhanov S.M., Khishchenko K.V. // Combust. Explos. Shock Waves. 2013. V. 49. № 1. P. 121. https://doi.org/10.1134/S0010508213010140
  12. Khishchenko K.V., Fortov V.E. // Proc. Kabardino-Balkarian State University. 2014. V. IV. P. 6.
  13. Kovalev Yu.M. // J. Eng. Phys. Thermophys. 2020. V. 93. P. 223.
  14. Kovalev Yu.M., Pomykalov E.V. // J. Eng. Phys. Thermophys. 2023. V. 96. P. 1052.
  15. Last Explosive Property Data. Los Alamos Series on Dynamic Material Properties / Eds. Gibbs T.R., Popolato A. Berkeley, Los Angeles, London: University of California Press, 1980. P. 15.
  16. Winey J. M., Toyoda Y., Gupta Y. M. // J. Appl. Phys. 2022. V. 132. P. 095905.
  17. Zeldovich Y.B., Reiser Yu.P. Physics of shock waves and high-temperature hydrodynamic phenomena. Moscow: Fizmatlit, 2008.
  18. Kovalev Yu.M. // J. Eng. Phys. Thermophys. 2018. V. 91. P. 1573.
  19. Kitaygorodsky A.I. Molecular crystals. Moscow: Science, 1971.
  20. Kovalev Yu.M. // Dokl. Phys. 2005. V. 403. № 4. P. 475.
  21. Kovalev Yu.M. // Issues of atomic science and technology. Series: Mathematical modeling of physical processes. 2005. № 2. P. 55.
  22. Qian-Xuesen. Physical mechanics. Moscow: Mir, 1965.
  23. Voskoboinikov I.M., Afanasenkov A.N., Bogomolov V.M. // Combust. Explos. Shock Waves. V. 3. P. 359.
  24. Olinger B., Roof B., Cady H. // Proc. Sympos. (Intern.) on High Dynamic Pressures. Paris: Commissariat a l’Energie Atomique, 1978. P. 3.
  25. Yoo C.S., Cynn H., Howard W.M., Holmes N. // Proc. 11th Deton. Sympos. (Intern.). Snowmass Village, Co, USA, 1998. P. 951.
  26. Kozlova S.A., Gubin S.A., Bogdanova Yu.A., Maklashova I.V., Selezenev A.A. // Combust. and Explos. 2017. V. 10. № 3. P. 109.
  27. Biryukova M.A., Petrov D.V., Kovalev Yu.M., Smirnov E.B. // Combust. Explos. Shock Waves. 2024. V. 60. № 6. P. 764.
  28. Kovalev Yu.M., Shestakov M.A. // Bull. South Ural State University. Series: Mathematics. Mechanics. Physics. 2024. V. 16. № 2. P. 86.
  29. Kovalev Yu.M., Kuropatenko V.F. // J. Eng. Phys. Thermophys. V. 91. P. 278.
  30. Shchetinin V.G. // Combust. Explos. Shock Waves. 1999. V. 35. P. 570.
  31. Clark T. // Computer chemistry. Moscow: Mir, 1990.
  32. Stepanov N.F., Novakovskaya Yu.V. // Ros. Chem. J. 2007. Т. LI. № 5. С. 5.
  33. Voskoboinikov I.M., Voskoboinikova N.F. // Sov. J. Chem. Phys. 1990. V. 7. № 3. P. 648.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences