Registration methods of radiation characteristics of shock-heated gases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The analysis of the main methods for recording the radiation characteristics of high-temperature gases behind the front of a strong shock wave, including the 3D-spectroscopy method and the time-integrated spectroscopy method, is carried out. A more realistic approach to processing experimental data is proposed, which presents the obtained information in the form of spectrograms of the thermal flux power of shock-heated gas. Spectrograms of the thermal flux power of shock-heated air measured by the time-integrated spectroscopy method in the shock wave velocity range from 8 to 11 km/s at an initial pressure of 0.25 Torr are analyzed. Their comparison with the corresponding spectrograms obtained by the 3D-spectroscopy method showed that both methods give approximately the same results.

About the authors

G. Y. Gerasimov

Institute of Mechanics, Lomonosov Moscow State University

Moscow, Russia

P. V. Kozlov

Institute of Mechanics, Lomonosov Moscow State University

Moscow, Russia

V. Y. Levashov

Institute of Mechanics, Lomonosov Moscow State University

Email: levashovvy@imec.msu.ru
Moscow, Russia

N. G. Bykova

Institute of Mechanics, Lomonosov Moscow State University

Moscow, Russia

I. E. Zabelinsky

Institute of Mechanics, Lomonosov Moscow State University

Moscow, Russia

References

  1. Uyanna O., Najafi H. // Acta Astronaut. 2020. V. 176. P. 341. https://doi.org/10.1016/j.actaastro.2020.06.047
  2. Brandis A.M., Cruden B.A. // AIAA Paper. 2017. № 2017–1145. https://doi.org/10.2514/6.2017-1145
  3. Gerasimov G.Ya., Kozlov P.V., Zabelinsky I.E., Bykova N.G., Levashov V.Yu. // Rus. J. Phys. Chem. B. 2022. V. 16. P. 642. https://doi.org/10.1134/S1990793122040194
  4. Bykova N.G., Zabelinsky I.E., Kozlov P.V., Gerasimov GYa.,. Levashov V.Yu. // Rus. J. Phys. Chem. B. 2023. V. 17. P. 1152. https://doi.org/10.1134/S1990793123050184
  5. Surzhikov S.T. // Rus. J. Phys. Chem. B. 2010. V. 4. P. 613. https://doi.org/10.1134/S1990793110040123
  6. Zhao Y., Huang H. // Acta Astronaut. 2020. V. 169. P. 84. https://doi.org/10.1016/j.actaastro.2020.01.002
  7. Brandis A.M., Johnson C.O. // AIAA Paper. 2017. № 2014–2374. https://doi.org/10.2514/6.2014-2374
  8. Cruden B., Martinez R., Grinstead J., Olejniczak J. // Ibid. 2017. № 2009–4240. https://doi.org/10.2514/6.2009-4240
  9. Brandis A.M., Johnston C.O., Cruden B.A. et al. // J. Thermophys. Heat Trans. 2015. V. 29. P. 209. https://doi.org/10.2514/1.T4000
  10. Dufrene A., Holden M. // AIAA Paper. 2011. № 2011–626. https://doi.org/10.2514/6.2011-626
  11. McGilvray M., Doherty L.J., Morgan R.G., Gildfind D.E. // Ibid. 2015. № 2015–3543. https://doi.org/10.2514/6.2015-3543
  12. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Acta Astronaut. 2022. V. 194. P. 461. https://doi.org/10.1016/j.actaastro.2021.10.032
  13. Kozlov P.V., Bykova N.G., Gerasimov G.Ya. et al. // Acta Astronaut. 2024. V. 214. P. 303. https://doi.org/10.1016/j.actaastro.2023.10.033
  14. Grosso Ferreira R., Carvalho B.B., Alves L.L. et al. // Sensors 2023. V. 23. P. 6027. https://doi.org/10.3390/s23136027
  15. Bose D., McCorkle E., Bogdanoff D., Allen G.A. // AIAA Paper. 2009. № 2009–1030. https://doi.org/10.2514/6.2009-1030
  16. Brandis A.M., Johnson C.O., Cruden B.A., Prabhu D.K. // Ibid. 2013. № 2013–1055. https://doi.org/10.2514/6.2013-1055
  17. Zalogin G.N., Kozlov P.V., Kuznetsova L.A. et al. // Tech. Phys. 2001. V. 46. P. 654. https://doi.org/10.1134/1.1379629
  18. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 652. https://doi.org/10.1134/S1990793121040199
  19. Surzhikov S.T. // Fluid Dyn. 2019. V. 54. P. 98. https://doi.org/10.1134/S0015462819010142
  20. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Fluid Dyn. 2022. V. 57. P. 780. https://doi.org/ 10.1134/S0015462822601322
  21. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Fluid Dyn. 2023. V. 58. P. 960. https://doi.org/ 10.1134/S0015462823601328
  22. NIST Atomic Spectra Database, Version 5.12. Gaithersburg: NIST, 2024. https://doi.org/10.18434/T4W30F https://data.nasa.gov/docs/datasets/aerothermodynamics/EAST/index.html
  23. Grinstead J.H., Wilder M.C., Olejniczak J. et al. // AIAA Paper. 2008. № 2008–1244. https://doi.org/10.2514/6.2008-1244

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences