Modified Ornstein-Zernike Critical State Theory

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In this work, a generalization of the Ornstein–Zernike theory of the critical state is proposed. The new approach makes it possible to reconstruct the pair correlation radius – the key parameter of the pair correlation function in the critical state – based on experimental Rayleigh scattering data from a critically opalescent fluid. As an application of the theory, experimental small-angle scattering data for critically opalescent carbon dioxide were used. It is shown that in the near-critical region, an increase in fluid temperature leads to a limited growth of the pair correlation radius.

About the authors

Y. A. Chaikina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: jchaikina@yandex.ru
Moscow, Russia

A. S. Vetchinkin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

A. A. Lundin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

I. D. Rodionov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

V. L. Shapovalov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

A. I. Shushin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

M. G. Golubkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

References

  1. Zimnyakov D.A., Sviridov A.P., Konovalov A.N. et al. // Sverkhkr. Flyuidy. Teor. Prakt. 2008. V. 3. № 3. P. 30.
  2. Ornstein L.S., Zernike F. // Proc. Sec. Sci. Kon. Acad. Wetensch. 1914. V. 17. P. 793.
  3. Ornstein L.S., Zernike F. // Phys. Z. 1918. V. 19. P. 134.
  4. Kvasnikov I.A. Thermodynamics and Statistical Physics. V. 2. Theory of Equilibrium Systems: Statistical Physics. Moscow: URSS, 2002.
  5. Fisher M.E. // J. Math. Phys. 1964. V. 5. № 7. P. 944. https://doi.org/10.1063/1.1704197
  6. Martynov G.A. Classical statistical mechanics. Theory of liquids. Dolgoprudny: Intellekt, 2011.
  7. Ivanov D.Y. Critical behavior of nonidealized systems. Moscow: Fizmatlit, 2003.
  8. Chaikina J.A., Umanskii S.Y. // Chem. Phys. 2020. V. 536. 110795. https://doi.org/10.1016/j.chemphys.2020.110795
  9. Chaikina J.A., Umanskii S.Y. // Russ. J. Phys. Chem. B. 2021. V. 15. № 8. P. 1266. https://doi.org/10.1134/S1990793121080029
  10. Lundin A.A., Chaikina J.A., Shushin A.I. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 8. P. 1361. https://doi.org/10.1134/S1990793122080115
  11. Chaikina J.A., Vetchinkin A.S., Golubkov M.G. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 8. P. 1795. https://doi.org/10.1134/S1990793124701331
  12. Croxton C.A. Liquid State Physics – A Statistical Mechanical Introduction. Cambridge University Press, 1974.
  13. Kvasnikov I.A. Thermodynamics and Statistical Physics. V. 3. Theory of Nonequilibrium Systems. Moscow: URSS, 2003.
  14. Behnejad H., Sengers J.V., Anisimov M.A. // Applied Thermodynamics of Fluids. Cambridge: Royal Society of Chemistry, 2010. P. 321. https://doi.org/10.1039/9781849730983-00321
  15. Ma S. Modern Theory of Critical Phenomena. Reading: Benjamin-Cummings, 1976.
  16. Egorov S.A. // Chem. Phys. Lett. 2002. V. 354. № 1–2. P. 140. https://doi.org/10.1016/S0009-2614(02)00129-X
  17. Corless R.M., Gonnet G.H., Hare D.E.G. et al. // Adv. Comput. Math. 1996. V. 5. № 1. P. 329. https://doi.org/10.1007/BF02124750
  18. Prudnikov A.P., Brychkov Y.A., Marichev O.I. Integrals and series. Special functions. Moscow: Nauka, 1983.
  19. Oxtoby D.W. // Advances in Chemical Physics / Eds. Prigogine I., Rice S.A. John Wiley & Sons, Inc., 1979. V. 40. № 1. P. 1. https://doi.org/10.1002/9780470142592.ch1
  20. Musso M., Matthai F., Keutel D. et al. // Pure Appl. Chem. 2004. V. 76. № 1. P. 147. https://doi.org/10.1351/pac200476010147
  21. Arakcheev V.G., Bagratashvili V.N., Valeev A.A. et al. // Russ. J. Phys. Chem. B. 2010. V. 4. № 8. P. 1245. https://doi.org/10.1134/S1990793110080117
  22. Quantum field theory and physics of phase transitions / Ed. Fedyanin V.K. Moscow: Mir, 1975.
  23. Bodneva V.L., Vetchinkin A.S., Lidsky B.V. et al. // Adv. Chem. Phys. 2025. V. 44. № 1. P. 13. https://doi.org/10.31857/S0207401X2501002e2
  24. Golubkov G.V., Adamson S.O., Borchevkina O.P. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 508. https://doi.org/10.1134/S1990793122030058
  25. Golyak Il.S., Anfimov D.R., Vintaykin I.B. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 320. https://doi.org/10.1134/S1990793123020264
  26. Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2024. V. 18. № 5. P. 1422. https://doi.org/10.1134/S1990793124701148
  27. Morozov A.N., Tabalin S.E., Anfimov D.R. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 763. https://doi.org/10.1134/S1990793124700234

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences