Ion accumulation by spherical clouds of microparticles in the ionized atmosphere
- Authors: Polyakov D.N.1, Shumova V.V.1,2, Vasilyak L.M.1
-
Affiliations:
- Joint Institute for High Temperatures, Russian Academy of Sciences
- Semenov Institute of Chemical Physics, Russian Academy of Sciences
- Issue: Vol 44, No 10 (2025)
- Pages: 70-80
- Section: Химическая физика атмосферных явлений
- URL: https://edgccjournal.org/0207-401X/article/view/692379
- DOI: https://doi.org/10.7868/S3034612625100079
- ID: 692379
Cite item
Abstract
The parameters of low-pressure electric discharge plasma in neon with microparticles have been calculated, at which spherical clouds of charged microparticles have been experimentally obtained. The indices determining the efficiency of ion accumulation by spherical clouds are formulated and the character of change of these indices for microparticles of different sizes depending on gas and microparticle concentrations is determined. The parameters of spherical cloud formation in terms of pressure and temperature of the experimental medium were compared with the parameters of the standard atmosphere at different altitudes.
About the authors
D. N. Polyakov
Joint Institute for High Temperatures, Russian Academy of Sciences
Email: cryolab@ihed.ras.ru
Moscow, Russia
V. V. Shumova
Joint Institute for High Temperatures, Russian Academy of Sciences; Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscow, Russia; Moscow, Russia
L. M. Vasilyak
Joint Institute for High Temperatures, Russian Academy of SciencesMoscow, Russia
References
- Golubkov M.G., Suvorova A.V., Dmitriev A.V., Golubkov G.V. // Russ. J. Phys. Chem. B. 2020. V. 14. P. 873. https://doi.org/10.1134/S1990793120050206
- Chengxun Y., Zhijian L., Bychkov V.L. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 955. https://doi.org/10.1134/S1990793122050189
- Bychkov V. L. Natural and Artificial Ball Lightning in the Earth’s Atmosphere. Cham: Springer, 2022. https://doi.org/10.1007/978-3-031-07861-3
- Bychkov V.L., Golubkov G.V. and Nikitin A.I. The Atmosphere and Ionosphere. Elementary Processes, Discharges and Plasmoids. Heidelberg: Springer, 2013.
- Surkov V.V., Hayakawa M. // Surv. Geophys. 2020. V. 41. P. 1101. https://doi.org/10.1007/s10712-020-09597-2
- Siingh D., Singh R.P., Singh A.K. et al. // Space Sci. Rev. 2012. V. 169. P. 73. https://doi.org/10.1007/s11214-012-9906-0
- Golubkov M.G., Suvorova, A.V., Dmitriev, A.V. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1449. https://doi.org/10.1134/S1990793124340050
- Kostrov A.V.// Plasma Phys. Rep. 2020. V. 46. P. 443. https://doi.org/10.1134/S1063780X20040066
- Pasko V.P. // Plasma Sources Sci. Technol. 2007. V. 16. P. S13. https://iopscience.iop.org/article/10.1088/ 0963-0252/16/1/S02
- Tarasenko V., Vinogradov N., Baksht E., Sorokin D. // J. Atmos. Sci. Res. 2022. V. 5. Is. 3. P. 26. https://doi.org/10.30564/jasr.v5i3.4858
- Klimov A.I., Brovkin V.G., Pashchina A.S. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1415. https://doi.org/10.1134/S1990793124701136
- Carrillo-Sánchez J.D., Nesvorný D., Pokorný P. et al. // Geophys. Res. Lett. 2016. V. 43, P. 11,979. https://doi.org/10.1002/2016GL071697
- Esposito F., Molinaro R., Popa C.I. et al. // Geophys. Res. Lett. 2016. V. 43. P. 5501. https://doi.org/10.1002/2016GL068463
- Vasilyak L.M., Shubralova E.V. & Chikirev V.N. // J. Commun. Technol. Electron. 2025. https://doi.org/10.1134/S1064226925700093
- Solomon S., Daniel J.S., Neely III R.R. et al. // Science. 2011. V. 333. P. 866.https://www.science.org/doi/ 10.1126/science.1206027
- Pustylnik M.Y., Pikalev A.A., Zobnin A.V. et al. // Contrib. Plasma Phys. 2021. V. 61. P. e202100126. https://doi.org/10.1002/ctpp.202100126
- Klumov B.A., Morfill G.E., and Popel S.I. // J. Exp. Theor. Phys. 2005. V. 100. P. 152. https://doi.org/10.1134/1.1866207
- Fortov V.E. and Morfill G.E.Complex and Dusty Plasmas: From Laboratory to Space. – New-York, CRC Press, 2009.
- Polyakov D.N., Shumova V.V., Vasilyak L.M. // J. Phys.: Conf. Ser. 2018. V. 1058. P. 012029. https://iopscience.iop.org/article/10.1088/1742- 6596/1058/1/012029
- Polyakov D.N., Shumova V.V., Vasilyak L.M. // Plasma Sources Sci. Technol. 2019. V. 28. P. 065017. https://doi.org/10.1088/1361-6595/ab2185
- Petrov O.F., Fortov V.E. // Contrib. Plasma Phys. 2013. V. 53. P. 767. https://doi.org/10.1002/ctpp.201310052
- Turner D.J. // J. Sci. Exploration. 2024. V. 38. № 3. P. 399. https://doi.org/10.31275/20242943
- Polyakov D.N., Shumova V.V., Vasilyak L.M. // Phys. Lett. A. 2021. V. 389. P. 127082. https://doi.org/10.1016/j.physleta.2020.127082
- Polyakov D.N., Shumova V.V., Vasilyak L.M. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 1241. https://doi.org/10.1134/S1990793123050263
- Polyakov D.N., Shumova V.V., Vasilyak L.M. // Plasma Sources Sci. Technol. 2022. V. 31. № 7. P. 074001. https://doi.org/10.1088/1361-6595/ac7c36
- Polyakov D.N., Shumova V.V., Vasilyak L.M. // J. Phys.: Conf. Ser. 2018. V. 946. P. 012159. http://dx.doi.org/10.1088/1742-6596/946/1/012159
- Polyakov D.N., Shumova V.V., Vasilyak L.M. // J. Appl. Phys. 2020. V. 128. P. 053301. https://doi.org/10.1063/5.0014944
- Polyakov D.N., Shumova V.V., Vasilyak L.M. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1128. https://doi.org/10.1134/S1990793124700635
- Polyakov D.N., Shumova V.V., Vasilyak L.M., Fortov V.E. // Phys. Scr. 2010. V. 82. № 7. P. 055501. https://iopscience.iop.org/article/10.1088/0031- 8949/82/05/055501
- Polyakov D.N., Vasilyak L.M.,Shumova V.V. // Surf. Eng. Appl. Electrochem. 2013. V. 49. № 2. P. 114. https://doi.org/10.3103/S1068375513020105
- Golubkov G.V., Berlin A.A, Dyakov Y.A. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1216. https://doi.org/10.1134/S1990793123050214
- Golubkov G.V., Manzhelii M.I., Berlin A.A. et al. // Russ. J. Phys. Chem. B. 2018. V. 12. P. 725. https://doi.org/10.1134/S1990793118040061
- Polyakov D.N., Shumova V.V., Vasilyak L.M., Fortov V.E. // Phys. Lett. A. 2011. V. 375. P. 3300. https://doi.org/10.1016/j.physleta.2011.07.005
- Polyakov D.N., Shumova V.V., Vasilyak L.M. // Plasma Sources Sci. Technol. 2021. V. 30. № 7. P. 07LT01. https://doi.org/10.1088/1361-6595/ac0a46
- Shumova V.V., Polyakov D.N., Vasilyak L.M. // Adv. Chem. Phys. 2025. V. 44. № 4. P. 109.
- Shumova V.V., Polyakov D.N., Vasilyak L.M. // Russ. J. Phys. Chem. B. 2021. V. 15. №4. P. 691. https://doi.org/10.1134/S1990793121040242
- https://bolsig.laplace.univ-tlse.fr/
- https://nl.lxcat.net
- Standard atmosphere. Parameters. (GOST 4401—81)[in Russian]. https://nauca.ru/ref/ГОСТ-4401-81.pdf
- Polyakov D.N., Vasilyak L.M., Shumova V.V. // Surf. Eng. Appl. Electrochem. 2015. V. 51. № 2. P. 143. https://doi.org/10.3103/S106837551502012X
- Vasilyak L.M., Vetchinin S.P., Nefedov, A.P., Polyakov D.N. // High Temp. 2000. V. 38. № 5. P. 675. https://doi.org/10.1007/BF02755917
- Balabanov V.V. et al. // J. Exp. Theor. Phys. 2001. V. 92. № 1. P. 86. https://doi.org/10.1134/1.1348464
- Vasilyak L.M., Vetchinin S.P., Polyakov D.N., Fortov V.E. // J. Exp. Theor. Phys. 2005. V. 100. № 5. P. 1029. https://doi.org/10.1134/1.1947327
- Raizer Y.P., Milikh G.M., Shneider M.N. // J. Atmosph. Sol.-Terr. Phys. 2007. V. 69. P. 925. https://doi.org/10.1016/j.jastp.2007.02.007
- Nijdam S.,Teunissen J., Ebert U. // Plasma Sources Sci. Technol. 2020. V. 29. P. 103001. https://iopscience.iop.org/article/10.1088/1361-6595/abaa05
Supplementary files
