Combustion characteristics of fuel compositions based on oil and coal sludge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Fuel mixtures based on coal and oil sludge were studied. Waste cooking oil and distilled tall oil with a mass fraction of 5% in the mixture were used as additional components. In the experiments, the main energy and emission characteristics of the mixture combustion were determined for the subsequent calculation of the integral efficiency indicator using multi-criteria decision analysis. It was shown that the addition of tall oil provides higher (by 5–17%) fuel efficiency indicators compared to the addition of waste cooking oil. For coal sludge-based fuels, the additives had a positive effect on sedimentation stability, calorific value and combustion efficiency, ignition delay times, reducing the latter by 10–20%. In the case of oil sludge-based fuels, the oil additives had a moderate effect on the recorded characteristics.

About the authors

V. V. Dorokhov

National Research Tomsk Polytechnic University; Kutateladze Institute of Thermophysics Syberian Branch of Russian Academy of Science

Tomsk, Russian Federation; Novosibirsk, Russian Federation

K. Y. Vershinina

National Research Tomsk Polytechnic University

Tomsk, Russian Federation

D. S. Romanov

National Research Tomsk Polytechnic University; Kutateladze Institute of Thermophysics Syberian Branch of Russian Academy of Science

Tomsk, Russian Federation; Novosibirsk, Russian Federation

P. A. Strizhak

National Research Tomsk Polytechnic University; Kutateladze Institute of Thermophysics Syberian Branch of Russian Academy of Science

Email: pavelspa@tpu.ru
Tomsk, Russian Federation; Novosibirsk, Russian Federation

References

  1. Kislov V.M., Tsvetkov M.V., Zaychenko A.Yu. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 947.
  2. Zaychenko A.Yu., Podlesnyy D.N., Salganskaya M.V. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 630.
  3. Bezuglov R.V., Papin V.V., Efimov N.N. et al. // Bull. South Ural State University: Power Engineering. 2023. V. 23. № 3. P. 78.
  4. Kislov V.M., Tsvetkov M.V., Pilipenko E.N. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 374.
  5. Ali I., Tariq R., Naqvi S.R. et al. // J. Energy Inst. 2021. V. 95. P. 30.
  6. Ling P., Mostafa M.E., Xu K. et al. // J. Environ. Chem. Eng. 2024. V. 12. № 2. Article 112058.
  7. Monika, Banga S., Pathak V. V. // Energy Nexus. 2023. V. 10. Article 100209.
  8. Aro T., Fatehi P. // Sep. Purif. Technol. 2017. V. 175. P. 469.
  9. Churchill J.G.B., Borugadda V.B., Dalai A.K. // Renewable Sustainable Energy Rev. 2024. V. 191. P. 114098.
  10. Cárdenas J., Orjuela A., Sánchez D.L. et al. // J. Cleaner Prod. 2021. V. 289. P. 125129.
  11. AlAbbad M., Gautam R., Romero E.G. et al. // J. Therm. Anal. Calorim. 2023. V. 148. № 5. P. 1875.
  12. Murko V.I., Zaostrovsky A.N., Anikin A.E. et al. // Coke Chem. 2022. V. 65. № 10. P. 487.
  13. Xu E., Miao Z., Jiang X. // Environ. Sci. Pollut. Res. 2023. V. 30. № 14. P. 40886.
  14. Santoleri J.J. Hazardous Waste Incineration. New York: Academic Press, 2003.
  15. Guo F., Zhong Z. // Environ. Pollut. 2018. V. 239. P. 21.
  16. Kumar A., Sah B., Singh A.R. et al. // Renewable Sustainable Energy Rev. 2017. V. 69. P. 596.
  17. Loureiro L.M.E.F., Gil P.B.F., Vieira de Campos F. V. et al. // J. Energy Inst. 2018. V. 91. № 6. P. 978.
  18. Chen D., Jiang Y., Jiang X. et al. // Fuel Process. Technol. 2014. V. 126. P. 122.
  19. Zhou M., Huang K., Yang D. et al. // Powder Technol. 2012. V. 229. P. 185.
  20. Zhu J., Zhang G., Miao Z. et al. // Colloids Surf., A. 2012. V. 412. P. 101.
  21. Yang D., Qiu X., Zhou M. et al. // Energy Convers. Manage. 2007. V. 48. № 9. P. 2433.
  22. Guo Z., Feng R., Zheng Y. et al. // Ultrason. Sonochem. 2007. V. 14. № 5. P. 583.
  23. Chang H., Jia Z., Zhang P. et al. // Colloids Surf., A. 2015. V. 471. P. 101.
  24. Li R., Yang D., Lou H. et al. // Energy Conversion and Management. 2012. V. 64. P. 139.
  25. Das D., Dash U., Meher J. et al. // Fuel Process. Technol. 2013. V. 113. P. 41.
  26. Vershinina K., Dorokhov V., Romanov D. et al. // Energy. 2025. V. 316. P. 134643.
  27. Hu G., Feng H., He P. et al. // J. Cleaner Prod. 2020. V. 251. P. 119594.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences