Моделирование имплантации наночастиц в материал с помощью лазерной ударной волны
- Authors: Сахвадзе Г.Ж.1, Сахвадзе Г.Г.1
-
Affiliations:
- Институт машиноведения им. А. А. Благонравова РАН
- Issue: No 6 (2024)
- Pages: 80-89
- Section: НОВЫЕ ТЕХНОЛОГИИ В МАШИНОСТРОЕНИИ
- URL: https://edgccjournal.org/0235-7119/article/view/677616
- DOI: https://doi.org/10.31857/S0235711924060094
- EDN: https://elibrary.ru/NOTPED
- ID: 677616
Cite item
Abstract
В статье изучается новая технология, называемая имплантацией наночастиц в поверхностный слой легкого сплава с использованием лазерной ударной волны. Разработаны конечно-элементные и аналитические модели для определения глубины имплантации WC-наночастиц в алюминиевую подложку при имплантации наночастиц с помощью лазерной ударной волны. Рассматриваются 2 режима: однократное применение технологии имплантации наночастиц в поверхностный слой, и последовательное двукратное применение имплантации наночастиц в поверхностный слой. Полученные результаты показали, что в обоих исследуемых режимах наночастицы имплантируются в поверхностный слой алюминиевого сплава АД1 с разной интенсивностью. Показано, что рассчитанные с помощью метода конечных элементов и аналитической моделью глубины имплантации наночастиц хорошо согласуются с экспериментальными данными, что подтверждает достоверность разработанных моделей глубин имплантации.
Full Text

About the authors
Г. Ж. Сахвадзе
Институт машиноведения им. А. А. Благонравова РАН
Author for correspondence.
Email: sakhvadze@mail.ru
Russian Federation, Москва
Г. Г. Сахвадзе
Институт машиноведения им. А. А. Благонравова РАН
Email: sakhvadze@mail.ru
Russian Federation, Москва
References
- Zeng L. J., Wang Y., Wang. H. et al. Numerical and experimental investigation on temperature distribution of the discontinuous welding // Comput. Mater. Sci. 2009. V. 44. P. 1153.
- Ferkel H., Mordike B. L. Magnesium strengthened by SiC nanoparticles // Mater. Sci. Eng. 2001. V. 298. P. 193.
- Yilbas B. S., Arif A. F. Laser shock processing of aluminum: model and experimental study // J. Appl. Phys. 2007. V. 40. P. 6740.
- Sakhvadze G. Zh. Use of laser shock hardening technology to improve the corrosion resistance of magnesium alloy implants // J. Mach. Manuf. Reliab. 2023. V. 52 (8). P. 895.
- Sakhvadze G. Zh., Sakhvadze G. G. Combined model based on the finite element method and artificial neural networks for modeling laser shock peening of titanium–niobium implants // J. Mach. Manuf. Reliab. 2023. V. 52 (7). P. 741.
- Molian P., Moliaa R., Nair R. Laser shock wave consolidation of nanodiamond powders on aluminum 319 // Appl. Surf. Sci. 2009. V. 255. P. 3859.
- Lu L., Huang T., Zhong M. L. WC nano-particle surface injection via laser shock peening onto 5A06 aluminum alloy // Surf. Coating. Technol. 2012. V. 206 (22). P. 4525.
- Cut C. Y., Cui X. G., Zhao Q. Simulation, microstructure and microhardness of the nano-SiC coating formed on Al surface via laser shock processing // Mater. Des. 2014. V. 62. P. 217.
- Cui C. Y., Cui X. G., Li X. D. et al. Plastic-deformation-driven SiC nanoparticle implantation in an Al surface by laser shock wave: mechanical properties, micro structure characteristics, and synergistic strengthening mechanisms // Int. J. Plast. 2018. V. 102. P. 83.
- Shypylenko A. V., Pshyk B., Crzeskowiak K. et al. Effect of ion implantation on the physical and mechanical properties of Ti-Si-N multifunctional coatings for biomedical applications // Mater. Des. 2016. V. 110. P. 821.
- Lu L. Research on Micro-nano Particles Surface Injection via Laser Shock Peening Technology. Tsinghua University Doctoral Dissertation. Beijing. 2013. 147 р.
- Ye C., Suslov S., Kim B. J. et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening // Acta Mater. 2011. V. 59. P. 1014.
- Jia G. H., Sun X. Q., Pei S. X. Critical penetration velocity and dynamic yield strength of target material // J. Ballist. 1998. V. 4. P. 46.
- Ren X. D., Zhang Y. K., Yongzhuo H. F. et al. Effect of laser shock processing on the fatigue crack initiation and propagation of 7050-T7451 aluminum alloy // Mater. Sci. Eng. 2011. V. A 528. P. 2899.
Supplementary files
