Numerical Simulation of the Interaction of High-Velocity Plasma Jets Injected in the Earth’s Ionosphere
- Autores: Losseva T.V.1,2, Urvachev E.M.1,2,3, Zetser Y.I.1, Lyakhov A.N.1,2, Kosarev I.B.1, Poklad Y.V.1
 - 
							Afiliações: 
							
- Institute of Geosphere Dynamics, Russian Academy of Sciences
 - Dukhov Research Institute of Automatics
 - National Research Centre “Kurchatov Institute”
 
 - Edição: Volume 49, Nº 8 (2023)
 - Páginas: 797-806
 - Seção: SPACE PLASMA
 - URL: https://edgccjournal.org/0367-2921/article/view/668461
 - DOI: https://doi.org/10.31857/S0367292123600450
 - EDN: https://elibrary.ru/JKCRGO
 - ID: 668461
 
Citar
Texto integral
Resumo
The paper presents a numerical simulation of the dynamics of high-velocity aluminum plasma jets with multiple injection in the Earth’s ionosphere. Scenarios of single injection, counter injection, and collimation of plasma jets at a given convergence angle are considered. The gas-dynamic parameters of plasma formations and their optical characteristics are determined.
Sobre autores
T. Losseva
Institute of Geosphere Dynamics, Russian Academy of Sciences; Dukhov Research Institute of Automatics
														Email: Tatiana.Losseva@gmail.com
				                					                																			                												                								119334, Moscow, Russia; 127030, Moscow, Russia						
E. Urvachev
Institute of Geosphere Dynamics, Russian Academy of Sciences; Dukhov Research Institute of Automatics; National Research Centre “Kurchatov Institute”
														Email: Tatiana.Losseva@gmail.com
				                					                																			                												                								119334, Moscow, Russia; 127030, Moscow, Russia; 123182, Moscow, Russia						
Yu. Zetser
Institute of Geosphere Dynamics, Russian Academy of Sciences
														Email: Tatiana.Losseva@gmail.com
				                					                																			                												                								119334, Moscow, Russia						
A. Lyakhov
Institute of Geosphere Dynamics, Russian Academy of Sciences; Dukhov Research Institute of Automatics
														Email: Tatiana.Losseva@gmail.com
				                					                																			                												                								119334, Moscow, Russia; 127030, Moscow, Russia						
I. Kosarev
Institute of Geosphere Dynamics, Russian Academy of Sciences
														Email: Tatiana.Losseva@gmail.com
				                					                																			                												                								119334, Moscow, Russia						
Yu. Poklad
Institute of Geosphere Dynamics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: Tatiana.Losseva@gmail.com
				                					                																			                												                								119334, Moscow, Russia						
Bibliografia
- Underwood T.C., Loebner K.T.K., Miller V.A., Cappel-li M.A. // Scientific Reps. 2019. V. 9(1). P. 2588.https://doi.org/10.1038/s41598-019-39827-6
 - Meier D.L., Koide S., Uchida Y.M. // Science. 2001. V. 291. P. 84.https://doi.org/10.1126/science.291.5501.84
 - Beskin V.S. // Astron. Reps. 2023. V. 67. P. 27.https://doi.org/10.1134/s1063772923010018
 - Крауз В.И., Харрасов А.М., Ламзин С.А., Додин А.В., Мялтон В.В., Ильичев И.В. // Физика плазмы. 2022. Т. 48. С. 506.https://doi.org/10.31857/S0367292122600443
 - Wen H., Ren C., Hansen E.C., Michta D., Zhang Y., Langendorf S., Tzeferacos P. // Phys. Plasmas. 2022. V. 29. P. 062706.https://doi.org/10.1063/5.0087035
 - Александров В.В., Баско М.М., Браницкий А.В., Грабовский Е.В., Грицук А.Н., Митрофанов К.Н., Олейник Г.М., Сасоров П.В., Фролов И.Н. // Физика плазмы. 2021. Т. 47. С. 613.https://doi.org/10.31857/S0367292121070039
 - Митрофанов К.Н., Александров В.В., Грицук А.Н., Браницкий А.В., Фролов И.Н., Грабовский Е.В., Сасоров П.В., Ольховская О.Г., Зайцев В.И. // Физика плазмы. 2018. Т. 44. С. 157.https://doi.org/10.7868/S0367292118020105
 - Кузенов В.В., Рыжков С.В. // Ядерная физика и инжиниринг. 2018. Т. 9. № 1. С. 63.https://doi.org/10.1134/S106377881811011X
 - Зецер Ю.И., Поклад Ю.В., Erlandson R.E. // Физика Земли. 2021. № 5. С. 184. https://doi.org/10.31857/S0002333721050227
 - Лосева Т.В., Голубь А.П., Косарев И.Б., Поклад Ю.В., Ляхов А.Н., Зецер Ю.И. // Динамические процессы в геосферах / М.: ИДГ РАН, 2021. № 13. С. 175.
 - Losseva T.V., Golub’ A.P., Kosarev I.B., Poklad Yu.V., Lyakhov A.N. // Proc. SPIE 11916, 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, 119167O (15 December 2021).https://doi.org/10.1117/12.2603249.
 - Лосева Т.В., Косарев И.Б., Поклад Ю.В., Ляхов А.Н., Зецер Ю.И., Урвачев Е.М. // Физика плазмы. 2022. Т. 48. С. 956.https://doi.org/10.31857/S0367292122600583
 - Glazyrin S.I. // Astron. Lett. 2013. V. 39. P. 221. https://doi.org/10.1134/S1063773713040026
 - Urvachev E.M., Blinnikov S.I., Glazyrin S.I., Bakla-nov P.V. // Astron. Lett. 2022. V. 48(1). P. 20.https://doi.org/10.1134/S1063773722010078
 - Toro E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer. 2009
 - Косарев И.Б. // Динамические процессы в геосферах / М.: ИДГ РАН. 2017. Вып. 9. С. 110.
 - Лосева Т.В., Косарев И.Б., Ляхов А.Н., Зецер Ю.И., Черменин А.В. // Динамические процессы в геосферах / М.: ИДГ РАН. 2019. Вып. 11. С. 126.
 - Munz C.D. // Mathem. methods in the applied sci. 1994. V. 17. P. 597.https://doi.org/10.1002/mma.1670170803
 - Subramaniam V., Raja L.L. // J. Computational Phys. 2018. V. 366. P. 207. https://doi.org/10.1016/j.jcp.2018.03.041
 
Arquivos suplementares
				
			
						
						
					
						
						
									













