INFLUENCE OF DRIFTS AND CURRENTS ON THE MAIN OPERATING PARAMETERS OF THE TOKAMAK T-15MD DIVERTOR

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The work presents the results of the first calculations of the T-15MD tokamak near-wall plasma in the SOLPS-ITER code taking into account the effects of drifts and currents. The modes with the power passing through the separatrix PSOL = 6 MW and different H gas puff intensities, corresponding to the average electron density on the separatrix, nesep = (2–4.5)·1019 m−3, are considered. The same as in other tokamaks of similar size, E × B drift leads to the flow of hydrogen from the outer divertor to the inner one, which changes the load distribution between the divertor targets. Drifts also affect the flow of the carbon impurity. As a rule, when describing the dependence on the H gas puff, either n esep or the total amount of hydrogen in the scrape off layer (SOL), Ntot, is used as a parameter characterizing the discharge. In this case, these quantities are considered as equivalent plasma characteristics in the SOL. It is shown that, from the point of view of estimating the influence of drifts, these quantities are not equivalent: the dependence of some divertor parameters on nesep does not change with the inclusion of drifts, but the dependence on Ntot can change. It is also seen that drifts lead to a more pronounced maximum in the dependence of the saturation current on the electron density, Isat(nesep). This is explained by changes in the emission of the carbon impurity and the power of the recombination source of hydrogen in the divertor.

Sobre autores

E. Marenkov

National Research Nuclear University “MEPhI; National Research Centre “Kurchatov Institute

Email: edmarenkov@mephi.ru
Moscow, 115409 Russia; Moscow, 123098 Russia

E. Kaveeva

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, 195251 Russia

I. Senichenkov

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, 195251 Russia

A. Pshenov

ITER

Saint-Paul-le`s-Durance, 13115 France

P. Semenov

National Research Centre “Kurchatov Institute

Moscow, 123098 Russia

A. Gorbunov

National Research Centre “Kurchatov Institute

Moscow, 123098 Russia

Bibliografia

  1. Bonnin X., Dekeyser W., Pitts R., Coster D., Voskoboynikov S., Wiesen S. // Plasma Fusion Res. 2016. V. 11. P. 1.
  2. Sang C., Guo H.Y., Stangeby P.C., Lao L.L., Taylor T.S. // Nucl. Fusion. 2017. V. 57. P. 56043.
  3. Sang C.F., Guo H.Y., Stangeby P.C., Wang H.Q., Wang L., Wang D.Z. // Nucl. Fusion. 2020. V. 60. P. 56011.
  4. Sontag A.C., Chen X., Canik J., Leonard A., Lore J.D., Moser A.L., Murakami M., Park J.M., Petty C. // Nucl. Fusion. 2017. V. 57. P. 76025.
  5. Jaervinen A.E., Allen S.L., Eldon D., Fenstermacher M.E., Groth M., Hill D.N., Lasnier C.J., Leonard A.W., McLean A.G., Porter G.D., Rognlien T.D., Samuell C.M., Wang H.Q., Watkins J.G. // Nucl. Mater. Energy. 2019. V. 19. P. 230.
  6. Pan O., Lunt T., Wischmeier M., Coster D., Stroth U. and the ASDEX Upgrade team // Plasma Phys. Control. Fusion. 2020. V. 62. P. 45005.
  7. Wu H., Subba F., Wischmeier M., Cavedon M., Zanino R. and the ASDEX Upgrade Team // Plasma Phys. Control. Fusion. 2021. V. 63. P. 105005.
  8. Pan O., Bernert M., Lunt T., Cavedon M., Kurzan B., Wiesen S., Wischmeier M., Stroth U. and the ASDEX Upgrade Team // Nucl. Fusion. 2022. V. 63. P. 16001.
  9. Scarabosio A., Eich T., Herrmann A., Sieglin B. // J. Nucl. Materials. 2013. V. 438. P. S426.
  10. Kukushkin A.S., Pacher H.D., Kotov V., Pacher G.W., Reiter D. // Fusion Eng. Design. 2011. V. 86. P. 2865.
  11. Pacher G.W., Pacher H.D., Janeschitz G., Kukushkin A.S. // Nucl. Fusion. 2008. V. 48. P. 105003.
  12. Kukushkin A.S., Pacher H.D., Loarte A., Komarov V., Kotov V., Merola M., Pacher G.W., Reiter D. // Nucl. Fusion. 2009. V. 49. P. 075008.
  13. Kukushkin A.S., Pacher H.D., Kotov V., Reiter D., Coster D., Pacher G.W. // Nucl. Fusion. 2007. V. 47. P. 698.
  14. Rozhansky V.A., Voskoboynikov S.P., Kaveeva E.G., Coster D.P., Schneider R. // Nucl. Fusion. 2001. V. 41. P. 387.
  15. Пшенов А.А., Кукушкин А.С., Крашенинников С.И. // Физика плазмы. 2020. Т. 46. С. 483.
  16. Пшенов А.А., Кукушкин А.С. // Физика плазмы. 2018. Т. 44. С. 544.
  17. Schneider R., Bonnin X., Borrass K., Coster D.P., Kastelewicz H., Reiter D., Rozhansky V.A., Braams B.J. // Contrib. Plasma Phys. 2006. V. 46. P. 3.
  18. Rozhansky V., Kaveeva E., Molchanov P., Veselova I., Voskoboynikov S., Coster D., Counsell G., Kirk A., Lisgo S. // Nucl. Fusion. 2009. V. 49. P. 025007.
  19. Chankin A.V., Corrigan G., Groth M., Stangeby P.C. // Plasma Phys. Control. Fusion. 2015. V. 57. P. 095002.
  20. Dekeyser W., Bonnin X., Lisgo S.W., Pitts R.A., Brunner D., LaBombard B., Terry J.L. // Nucl. Mater. Energy. 2017. V. 12. P. 899.
  21. Rozhansky V., Molchanov P., Veselova I., Voskoboynikov S., Kirk A., Coster D. // Nucl. Fusion. 2012. V. 52. P. 103017.
  22. Wang H.Q., Watkins J.G., Guo H.Y., Groth M., Jarvinen A.E., Leonard A.W., Ren J., Thomas D.M., Boedo J. // Phys. Plasmas. 2021. V. 28. P. 052509.
  23. Du H., Guo H.Y., Stangeby P.C., Bonnin X., Zheng G., Duan X., Xu M. // Nucl. Fusion. 2020. V. 60. P. 126030.
  24. Senichenkov I.Y., Kaveeva E.G., Sytova E.A., Rozhansky V.A., Voskoboynikov S.P., Veselova I.Y., Coster D.P., Bonnin X., Reimold F. // Plasma Phys. Control. Fusion. 2019. V. 61. P. 45013.
  25. Kaveeva E., Rozhansky V., Veselova I., Senichenkov I., Giroud C., Pitts R.A., Wiesen S., Voskoboynikov S. // Nucl. Mater. Energy. 2021. V. 28. P. 101030.
  26. Hitzler F., Wischmeier M., Reimold F., Coster D.P. and the ASDEX Upgrade Team // Plasma Phys. Control. Fusion. 2020. V. 62. P. 85013.
  27. Sytova E., Pitts R.A., Kaveeva E., Bonnin X., Coster D., Rozhansky V., Senichenkov I., Veselova I., Voskoboynikov S., Reimold F. // Nucl. Mater. Energy. 2019. V. 19. P.72.
  28. Rozhansky V.A., Shirobokov A.A., Kaveeva E.G. // Contributions Plasma Phys. 2024. V. 64. P. 7.
  29. Rozhansky V., Kaveeva E., Senichenkov I., Sytova E., Veselova I., Voskoboynikov S., Coster D. // Contributions Plasma Phys. 2018. V. 58. P. 540.
  30. Khayrutdinov R.R., Lukash V.E. // J. Comput. Phys. 1993. V. 109. P. 193.
  31. Khvostenko P.P., Azizov E.A., Alfimov D.E., Belyakov V.A., Bondarchuk E.N., Chudnovsky A.N., Dokuka V.N., Kavin A.A., Khayrutdinov R.R., Khokhlov M.V., Kitaev B.A., Krasnov S.V., Maximova I.I., Labusov A.N., Lukash V.E., Mineev A.B., Muratov V.P., Nikolaev A.V., Tanchuk V.N., Tcherdakov A.K. // Fusion Eng. Design. 2015. V. 98–99. P. 1090.
  32. Marenkov E.D., Kukushkin A.S., Pshenov A.A. // Nucl. Fusion. 2021. V. 61. P. 034001.
  33. Garca-Rosales C., Eckstein W., Roth J. // J. Nucl. Materials. 1995. V. 218. P. 8.
  34. Roth J., Preuss R., Bohmeyer W., Brezinsek S., Cambe A., Casarotto E., Doerner R., Gauthier E., Federici G., Higashijima S., Hogan J., Kallenbach A., Kirschner A., Kubo H., Layet J.M., Nakano T., Philipps V., Pospieszczyk A., Pugno R., Ruggie´ri R., Schweer B., Sergienko G., Stamp M. // Nucl. Fusion. 2004. V. 44. P. L21.
  35. Kotov V., Reiter D., Pitts R.A., Jachmich S., Huber A., Coster D.P. // Plasma Phys. Control. Fusion. 2008. V. 50. P. 105012.
  36. Fil A., Lipschultz B., Moulton D., Dudson B.D., Fe´vrier O., Myatra O., Theiler C., Verhaegh K., Wensing M., teams Euro M and team the TCV // Plasma Phys. Control. Fusion. 2020. V. 62. P. 35008.
  37. Rozhansky V., Kaveeva E., Senichenkov I., Veselova I., Voskoboynikov S., Pitts R.A., Coster D., Giroud C., Wiesen S. // Nucl. Fusion. 2021. V. 61. P. 126073.
  38. Eich T., Leonard A.W., Pitts R.A., Fundamenski W., Goldston R.J., Gray T.K., Herrmann A., Kirk A., Kallenbach A., Kardaun O., Kukushkin A.S., LaBombard B., Maingi R., Makowski M.A., Scarabosio A., Sieglin B., Terry J., Thornton A., Team AU and Contributors JET-E // Nucl. Fusion. 2013. V. 53. P. 93031.
  39. Kukushkin A.S., Pacher H.D., Pacher G.W., Kotov V., Pitts R.A., Reiter D. // J. Nucl. Mater. 2013. V. 438. P. S203.
  40. Kaveeva E., Rozhansky V., Senichenkov I., Sytova E., Veselova I., Voskoboynikov S., Bonnin X., Pitts R.A., Kukushkin A.S., Wiesen S., Coster D. // Nucl. Fusion. 2020. V. 60. P. 046019.
  41. Krasheninnikov S.I., Kukushkin A.S., Pshenov A.A. // Phys. Plasmas. 2016. V. 23. P. 055602.
  42. Marenkov E., Pshenov A. // Nucl. Fusion. 2020. V. 60. P. 026011.
  43. Boedo J., McLean A.G., Rudakov D.L., Watkins J.G. // Plasma Phys. Control. Fusion. 2018. V. 60. P. 44008.
  44. Stangeby P.C. The plasma boundary of magnetic fusion devices. Institute of Physics Pub. Philadelphia, Pennsylvania, 2000.
  45. Krasheninnikov S.I., Kukushkin A.S. // J. Plasma Phys. 2017. V. 83. P. 155830501.
  46. Eich T., Goldston R.J., Kallenbach A., Sieglin B., Sun H.J. // Nucl. Fusion. 2018. V. 58. P. 034001.
  47. Kallenbach A., Bernert M., Beurskens M., Casali L., Dunne M., Eich T., Giannone L., Herrmann A., Maraschek M., Potzel S., Reimold F., Rohde V., Schweinzer J., Viezzer E., Wischmeier M. // Nucl. Fusion. 2015. V. 55. P. 53026.
  48. Брагинский С.И. // Вопросы теории плазмы. Т. 1. М.: Атомиздат, 1963. С. 183.
  49. Kaveeva E., Rozhansky V. // ITER Plasma Phys. Control. Fusion. 2023. V. 65. P. 055020.
  50. Jaervinen A.E., Allen S.L., Groth M., McLean A.G., Rognlien T.D., Samuell C.M., Briesemeister A., Fenstermacher M., Hill D.N., Leonard A.W., Porter G.D. // Nucl. Mater. Energy. 2017. V. 12. P. 1136.
  51. Krasheninnikov S.I., Kukushkin A.S., Pistunovich V.I., Pozharov V.A., Kurchatov I.V. // Nucl. Fusion. 1987. V. 27. P. 1805.
  52. Marenkov E.D., Pshenov A.A., Kukushkin A.S. // Plasma Phys. Control. Fusion. 2022. V. 64. P. 115006.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025