Investigation of heterostructures based on hafnium oxide
- Authors: Sharifullina Y.I.1, Gumarova I.I.1,2, Mamin R.F.2, Nedopekin O.V.1
-
Affiliations:
- Kazan Federal University
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the Russian Academy of Science
- Issue: Vol 87, No 4 (2023)
- Pages: 580-586
- Section: Articles
- URL: https://edgccjournal.org/0367-6765/article/view/654439
- DOI: https://doi.org/10.31857/S0367676522701034
- EDN: https://elibrary.ru/MDCZEP
- ID: 654439
Cite item
Abstract
We presented ab initio calculations of bulk structures and thin films of hafnium oxide, and heterostructures based on hafnium oxide in the tetragonal phase and silicon, structural and electronic properties are investigated. The density of states spectra is considered, the results obtained are analyzed, and some of them are compared with previously obtained data (for the studied systems).
About the authors
Y. I. Sharifullina
Kazan Federal University
Author for correspondence.
Email: janesharifullina@yandex.ru
Russia, 420008, Kazan
I. I. Gumarova
Kazan Federal University; Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the Russian Academy of Science
Email: janesharifullina@yandex.ru
Russia, 420008, Kazan; Russia, 420029, Kazan
R. F. Mamin
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the Russian Academy of Science
Email: janesharifullina@yandex.ru
Russia, 420029, Kazan
O. V. Nedopekin
Kazan Federal University
Email: janesharifullina@yandex.ru
Russia, 420008, Kazan
References
- Gritsenko V.A., Perevalov T.V., Islamov D.R. // Phys. Reports. 2016. V. 613. P. 1.
- Song Ch., Kwon H. // Electronics. 2021. V. 10. Art. No. 2759.
- Воротилов К.А., Сигов А.С. // Нано- и микросист. техника. 2008. Т. 10. С. 30.
- Ishiwara H. // J. Nanosci. Nanotech. 2012. V. 12. Art. No. 7619-27.
- Mikolajick T., Slesazeck S., Mulaosmanovic H. et al. // J. Appl. Phys. 2021. V. 129. Art. No. 100901.
- Tsymbal E., Dagotto E., Eom C., Ramesh R. // In: Multifunctional oxide heterostructures. Oxford: Oxford University Press, 2012. P. 340.
- Sugibuchi K., Kurogi Y., Endo N. // J. Appl. Phys. 1975. V. 46. P. 2877.
- Muller J., Polakowski P., Muller S. et al. // Proc. NVMTS (Pittsburgh, 2016). P. 1.
- Mo F., Tagawa Y., Jin C. et al. // IEEE J. Solid-State Circuits. 2019. V. 11. P. 1.
- Zacharaki C., Tsipas P., Chaitoglou S. et al. // Appl. Phys. Lett. 2019. V. 114. Art. No. 112901.
- Lee Y., Son S., Ham W., Ahn S. // Materials. 2022. V. 15. Art. No. 2251.
- Chanthbouala A, Crassous A., Garcia V. et al. // Nature Nanotech. 2012. V. 7. P. 101.
- Garcia V., Fusil S., Bouzehouane K. et al. // Nature. 2009. V. 460. P. 81.
- Wang P., Yu S. // MRS Commun. 2020. V. 10. P. 538.
- Böscke T., Müller J., Bräuhaus D. et al. // Appl. Phys. Lett. 2011. V. 99. Art. No. 102903.
- Kisi E.H., Howard C.J. // Key Engin. Mater. 1998. V. 153. P. 1.
- Huan T.D., Sharma V., Rossetti G.A., Ramprasad R. // Phys. Rev. B. 2014. V. 90. Art. No. 064111.
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. Art. No. 3865.
- Robertson J., Wallace R.M. // Mater. Sci. Engin. R. 2015. V. 88. P. 1.
- Afanas’ev V.V., Stesmans A., Chen F. et al. // Appl. Phys. Lett. 2002. V. 81. Art. No. 1053.
- Adelmann C., Sriramkumar V., Van Elshocht S. et al. // J. Appl. Phys. 2007. V. 91. Art. No. 162902.
- Kresse G., Furthmüller J. // Comp. Mater. Sci. 1996 V. 6. No. 1. P. 15.
- Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54. No. 16. Art. No. 11169.
- Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. No. 3. Art. No. 1758.
- MedeA version 3.4. San Diego: Materials Design Inc., 2012.
- Laudadio E., Stipa P., Pierantoni L. et al. // Crystals. 2022. V. 12. P. 2.
Supplementary files
