Pinning of vortices during the passage of turbulent magnetization reversal waves in antidot films with through and non-through holes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Micromagnetic modeling of the process of magnetization reversal in films with antidot arrays, initiated by a moving domain wall, is performed. Under certain conditions, a narrow magnetization reversal zone appears, filled with vortex structures (turbulent wave). Changes in speed, temporary or final stops of the wave are observed. The existence of a connection between the features of wave motion and the structure of the vortex zone is shown.

About the authors

V. V. Zverev

Ural Federal University; Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: vvzverev49@gmail.com
Russia, 620002, Ekaterinburg; Russia, 620990, Ekaterinburg

References

  1. Estévez V., Laurson L. // Phys. Rev. B. 2015. V. 91. Art. No. 054407.
  2. Göbel B., Mertig I., Tretiakov O.A. // Phys. Reports. 2021. V. 895. P. 1.
  3. Parkin S.S.P., Hayashi M., Thomas L. // Science. 2008. V. 320. No. 5873. P. 190.
  4. Allwood D.A, Gang Xiong, Cooke M.D. at al. // Science. 2002. V. 296. No. 5575. P. 2003.
  5. Hertel R., Schneider C.M. // Phys. Rev. Lett. 2006. V. 97. No. 17. Art. No. 177202.
  6. Jun-Young Lee, Ki-Suk Lee, Sangkook Choi et al. // Phys. Rev. B. 2007. V. 76. Art. No. 184408.
  7. Estévez V., Laurson L. // Phys. Rev. B. 2016. V. 93. Art. No. 064403.
  8. Estévez V., Laurson L. // Phys. Rev. B. 2017. V. 96. No. 6. Art. No. 064420.
  9. Зверев В.В., Байкенов Е.Ж., Изможеров И.М. // ФTТ. 2019. Т. 61. № 11. С. 2070; Zverev V.V., Baikenov E.Z., Izmozherov I.M. // Phys. Solid State. 2019. V. 61. No. 11. P. 2041.
  10. Tahir N., Zelent M., Gieniusz R. et al. // J. Phys. D. 2016. V. 50. Art. No. 025004.
  11. Малоземов А., Слонзуски Дж. Доменные стенки с цилиндрическими магнитными доменами. М.: Мир, 1982. 384 с.
  12. Зверев В.В., Изможеров И.М., Филиппов Б.Н. // ФTТ. 2018. Т. 60. № 2. С. 294; Zverev V.V., Izmozherov I.M., Filippov B.N. // Phys. Solid State. 2018. V. 60. P. 299.
  13. Noske M., Stoll H., Fähnle M. et al. // Phys. Rev. B. 2015. V. 91. Art. No. 014414.
  14. Donelly C., Metlov K.L., Scagnoli V. // Nature Phys. 2021. V. 17. No. 3. P. 316.
  15. Lebecki K.M., Donahue M.J., Gutowski M.W. // J. Phys. D. 2008. V. 41. Art. No. 175005.
  16. Vansteenkiste A., Leliaert J., Dvornik M. et al. // AIP Advances. 2014. V. 4. Art. No. 107133.
  17. LaBonte A.E. // J. Appl. Phys. 1969. V. 6. P. 2450.
  18. Gunter T., Theisel H. // Comput. Graph. Forum. 2018. V. 37. No. 6. P.149.
  19. Thiele A.A. // Phys. Rev. Lett. 1973. V. 30. No. 6. P. 230.
  20. Papanicolaou N., Tomaras T.N. // Nucl. Phys. B. 1991. V. 360. No. 2–3. P. 425.
  21. Дубовик М.Н., Зверев В.В., Филиппов Б.Н. // Физ. мет. и металловед. 2014. Т. 115. № 11. С. 1226; Dubovic M.N., Zverev V.V., Filippov B.N. // Phys. Met. Metallogr. 2014. V. 115. No. 11. P. 1160.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (879KB)
4.

Download (1MB)
5.

Download (2MB)

Copyright (c) 2023 В.В. Зверев