Second-order optical differentiator based on a composite metal–dielectric–metal structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Optical properties of a composite structure consisting of two sequentially arranged three-layer metal-dielectric-metal structures (MDM-structures) are considered. It is shown that such a composite MDM-structure can perform second-order spatiotemporal differentiation with high quality at normal incidence. The obtained results can find application in creating systems for analog optical computing and optical information processing.

About the authors

A. I. Kashapov

Image Processing Systems Institute of RAS – Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences; Samara National Research University

Author for correspondence.
Email: ar.kashapov@outllok.com
Russia, 443001, Samara; Russia, 443086, Samara

E. A. Bezus

Image Processing Systems Institute of RAS – Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences; Samara National Research University

Email: ar.kashapov@outllok.com
Russia, 443001, Samara; Russia, 443086, Samara

D. A. Bykov

Image Processing Systems Institute of RAS – Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences; Samara National Research University

Email: ar.kashapov@outllok.com
Russia, 443001, Samara; Russia, 443086, Samara

L. L. Doskolovich

Image Processing Systems Institute of RAS – Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences; Samara National Research University

Email: ar.kashapov@outllok.com
Russia, 443001, Samara; Russia, 443086, Samara

References

  1. Silva A., Monticone F., Castaldi G. et al. // Science. 2014. V. 343. P. 161.
  2. Zhou Y., Zheng H., Kravchenko I.I., Valentine J. // Nature Photon. 2020. V. 14. P. 316.
  3. Bykov D.A., Doskolovich L.L., Soifer V.A. // Opt. Lett. 2011. V. 36. P. 3509.
  4. Doskolovich L.L., Bykov D.A., Bezus E.A., Soifer V.A. // Opt. Lett. 2014. V. 39. P. 1278.
  5. Golovastikov N.V., Doskolovich L.L., Bezus E.A. et al. // J. Exp. Theor. Phys. 2018. V. 127. P. 202.
  6. Karimi A., Zarifkar A., Miri M. // J. Opt. Soc. Amer. B. 2019. V. 36. P. 1738.
  7. Kashapov A.I., Doskolovich L.L., Bezus E.A. et al. // J. Optics. 2021. V. 23. No. 2. Art. No. 023501.
  8. Zhang J., Ying Q., Ruan Z. // Opt. Lett. 2019. V. 44. P. 4511.
  9. Golovastikov N.V., Bykov D.A., Doskolovich L.L. // Opt. Lett. 2015. V. 40. P. 3492.
  10. https://refractiveindex.info.
  11. Johnson P.B., Christy R.W. // Phys. Rev. B. 1972. V. 6. No. 12. P. 4370.
  12. Moharam M.G., Pommet D.A., Grann E.B. Gaylord T.K. // J. Opt. Soc. Amer. A. 1995. V. 12. P. 1077.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (250KB)
3.

Download (879KB)
4.

Download (932KB)

Copyright (c) 2023 А.И. Кашапов, Е.А. Безус, Д.А. Быков, Л.Л. Досколович