Waveguide structures and photon splitters fabricated by direct (3 + 1)D laser writing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of high-performance systems for the big data transmission and processing fabrication determines the importance of creating hybrid photonic integrated circuits with complex architecture. We studied of three-dimensional photonic waveguide structures created by direct (3 + 1)D laser writing, with the aim of adding such structures to photonic integrated circuits.

About the authors

D. A. Kolymagin

Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny

D. A. Chubich

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny

D. A. Shcherbakov

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny

R. M. Pattia

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny

A. V. Gritsienko

Moscow Institute of Physics and Technology (National Research University); Lebedev Physical Institute of the Russian Academy of Sciences

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny; Russia, 119991, Moscow

A. V. Pisarenko

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny

I. V. Dushkin

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny

A. G. Vitukhnovskiy

Moscow Institute of Physics and Technology (National Research University); Lebedev Physical Institute of the Russian Academy of Sciences

Email: kolymagin@phystech.edu
Russia, 141700, Dolgoprudny; Russia, 119991, Moscow

References

  1. Son G., Han S., Park J. et al. // Nanophotonics. 2018. V. 7. No. 12. P. 1845.
  2. Pao Y.H., Rentzepis P.M. // Appl. Phys. Lett. 1965. V. 6. No. 5. P. 93.
  3. Sun H.B., Kawata S. // In: NMR. 3D Analysis. Photopolymerization. Berlin, Heidelberg: Springer, 2004. P. 169.
  4. Витухновский А.Г., Звагельский Р.Д., Колымагин Д.А. и др. // Опт. и спектроск. 2019. Т. 126. № 1. С. 63; Vitukhnovsky A.G., Zvagelsky R.D., Kolymagin D.A. et al. // Opt. Spectrosc. 2019. V. 126. No. 1. P. 54.
  5. Gehring H., Eich A., Schuck C., Pernice W.H.P. // Opt. Lett. 2019. V. 44. No. 20. P. 5089.
  6. Lindenmann N., Dottermusch S., Goedecke M.-L. et al. // J. Light. Technol. 2015. V. 33. No. 4. P. 755.
  7. Витухновский А.Г., Звагельский Р.Д., Колымагин Д.А. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 7. С. 927; Vitukhnovsky A.G., Zvagelsky R.D., Kolymagin D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 7. P. 760.
  8. Schumann M., Buckmann T., Gruhler N. et al. // Light. Sci. Appl. 2014. V. 3. No. 6. Art. No. e175.
  9. Schell A.W., Kaschke J., Fischer J. et al. // Sci. Reports. 2013. V. 3. P. 1577.
  10. Moughames J., Porte X., Larger L. et al. // Opt. Mater. Express. 2020. V. 10. No. 11. P. 2952.
  11. Lindenmann N., Balthasar G., Hillerkuss D. et al. // Opt. Express. 2012. V. 20. No. 16. P. 17667.
  12. Billah M.R., Blaicher M., Hoose T. et al. // Optica. 2018. V. 5. No. 7. P. 876.
  13. Dietrich P.-I., Blaicher M., Reuter I. et al. // Nature Photonics. 2018. V. 12. No. 4. P. 241.
  14. Atabaki A.H., Moazeni S., Pavanello F. et al. // Nature. 2018. V. 556. No. 7701. P. 349.
  15. Stojanović V., Ram R. J., Popović M. et al. // Opt. Express. 2018. V. 26. No. 10. P. 13106.
  16. Selvaraja S.K., Sethi P. // Emerging Waveguide Technology. 2018. V. 95. P. 458.
  17. Dong P., Chen Y.K., Duan G.H., Neilson D.T. // Nanophotonics. 2014. V. 3. No. 4–5. P. 215.
  18. Chen L., Doerr C.R., Chen Y.K. // Opt. Lett. 2011. V. 36. No. 4. P. 469.
  19. Gao L., Huo Y., Zang K. et al. // Sci. Reports. 2015. V. 5. No. 1. Art. No. 15794.
  20. Staude I., Schilling J. // Nature Photonics. 2017. V. 11. No. 5. P. 274.
  21. Moughames J., Porte X., Thiel M. et al. // Optica. 2020. V. 7. No. 6. P. 640.
  22. Dottermusch S., Busko D., Langenhorst M. et al. // Opt. Lett. 2019. V. 44. No. 1. P. 29.
  23. Shcherbakov D.A., Kolymagin D.A., Matital R.P. et al. // J. Russ. Laser Res. 2023. V. 44. P. 47.
  24. Porte X., Dinc N.-U., Moughames J. et al. // Optica. 2021. V. 8. No. 10. P. 1281.
  25. Zhiganshina E.R., Arsenyev M.V., Chubich D.A. et al. // Eur. Polym. J. 2022. V. 162. Art. No. 110917.
  26. Dorkenoo K., Van Wonderen A.J., Bulou H. et al. // Appl. Phys. Lett. 2003. V. 83. No. 12. P. 2474.
  27. Schmid M., Ludescher D., Giessen H. // Opt. Mater. Express. 2019. V. 9. No. 12. P. 4564.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (49KB)
3.

Download (411KB)
4.

Download (167KB)
5.

Download (448KB)

Copyright (c) 2023 Д.А. Колымагин, Д.А. Чубич, Д.А. Щербаков, Р.М. Паттиа, А.В. Грициенко, А.В. Писаренко, И.В. Душкин, А.Г. Витухновский