Optical pumping of rubidium isotopes by Cr3+:BeAl2O4 laser radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the use of a Cr3+:BeAl2O4 laser in free-running operating as a source of emission for optical pumping rubidium alkali metal vapors. The use of dispersive elements in the composition of the laser cavity makes it possible to smoothly tune lasing wavelength and to realize generation at wavelengths corresponding to the D1 and D2 lines of the 85Rb and 87Rb isotopes. Optical pumping of rubidium isotopes by laser emission with wavelengths of 795 and 780 nm, respectively, is experimentally implemented, and their fluorescence is demonstrated. The question of using a wavelength-tunable laser in the method of spin-exchange optical pumping of noble gases is discussed.

About the authors

A. A. Antipov

Institute on Laser and Information Technologies of the Federal Scientific Research Centre
“Crystallography and photonics” of Russian Academy of Sciences

Author for correspondence.
Email: antiplit@yandex.ru
Russia, 140700, Shatura

A. G. Putilov

Institute on Laser and Information Technologies of the Federal Scientific Research Centre
“Crystallography and photonics” of Russian Academy of Sciences

Email: antiplit@yandex.ru
Russia, 140700, Shatura

A. E. Shepelev

Institute on Laser and Information Technologies of the Federal Scientific Research Centre
“Crystallography and photonics” of Russian Academy of Sciences

Email: antiplit@yandex.ru
Russia, 140700, Shatura

References

  1. Григорьев Г.Ю., Набиев Ш.Ш. // Хим. физика. 2018. Т. 37. № 5. С. 3.
  2. Panayiotis N., Coffey A.M., Ranta K. et al. // J. Phys. Chem. B. 2014. V. 118. No. 18. P. 4809.
  3. Rohan S., John C., Wang Z. et al. // Sci. Reports. 2020. V. 10. P. 1.
  4. Albert M.S., Catesf G.D., Driehuyst B. et al. // Lett. Nature. 1994. V. 370. P. 199.
  5. Roos J., Mcadams H.P., Kaushik S.S. at al. // Magn. Res. Imaging Clin. North Amer. 2015. V. 23. No. 2. P. 217.
  6. Gaede H.C., Song Y.Q., Taylor R.E. at al. // Appl. Magn. Res. 1995. V. 8. P. 373.
  7. Григорьев Г.Ю., Лагутин А.С. // ЖТТ. 2022. Т. 92. № 9. С. 1277; Grigoriev G.Y., Lagutin A.S. // Tech. Phys. 2022. V. 67. No. 9. P. 1089.
  8. Happer W., Miron E., Schaefer S. et al. // Phys. Rev. A. 1984. V. 29. P. 3092.
  9. Appelt S., Ben-Amar Baranga A., Erickson C. et al. // Phys. Rev. A. 1998. V. 58. No. 2. P. 1412.
  10. Kelley M., Branca R. // Appl. Phys. 2021. V. 129. Art. No. 154901.
  11. Walker T., Happer W. // Rev. Mod. Phys. 1997. V. 69. No. 2. P. 629.
  12. Driehuys B., Cates G.D. et al. // Appl. Phys. Lett. 1996. V. 69. P. 1668.
  13. Nikolaou P., Whiting N., Eschmann N.A. et al. // J. Magn. Res. 2009. 197. P. 249.
  14. Демкин В., Демкин А., Шадрин М. // Фотоника. 2012. № 3. С. 33.
  15. Siddons P., Adams C.S., Ge C., Hughes I.G. // J. Physics B. 2008. V. 41. No. 15. Art. No. 155004.
  16. Banerjee A., Das D., Natarajan V. // Europhys. Lett. 2004. V. 65. No. 2. P. 172.
  17. Volodin B.L., Dolgy S.V., Melnik E.D., Downs E. // Opt. Lett. 2004. V. 29. No. 16. P. 1891.
  18. Whiting N., Nikolaou P., Eschmann N.A. et al. // Appl. Phys. B. 2012. V. 106. No. 4. P. 775.
  19. Антипов А.А., Путилов А.Г., Осипов А.В., Шепелев А.Е. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1593; Antipov A.A., Putilov A.G., Osipov A.V., Shepelev A.E. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. P. 1359.
  20. Putilov A.G., Antipov A.A., Shepelev A.E. et al. // J. Phys. Conf. Ser. 2021. V. 1822. Art. No. 012016.
  21. Putilov A.G., Antipov A.A., Shepelev A.E. et al. // J. Phys. Conf. Ser. 2019. V. 1331. Art. No. 012016.
  22. https://steck.us/alkalidata/rubidium85numbers.pdf.
  23. https://steck.us/alkalidata/rubidium87numbers.pdf.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (154KB)
3.

Download (1MB)
4.

Download (73KB)
5.

Download (360KB)
6.

Download (755KB)

Copyright (c) 2023 А.А. Антипов, А.Г. Путилов, А.Е. Шепелев