Nonlinear and relaxation processes in piezoceramics in weak electric fields

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the effects of piezoelectric hysteresis and relaxation induced by a weak constant electric field in ferroelectric ceramics. Using the piezoelectric resonance analysis method and program, precision measurements of the impedance spectra for thickness and radial vibrations of thin piezoceramic disks were performed for various polarities of the applied constant electric field and polarization of the piezoceramic. An analysis of the field and time dependences of the complex piezoelectric constants of piezoceramics obtained by processing sequentially measured impedance spectra is carried out, and a physical interpretation of the results is proposed.

About the authors

N. A. Shvetsova

Institute of Physics, Southern Federal University

Author for correspondence.
Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don

I. A. Shvetsov

Institute of Physics, Southern Federal University

Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don

E. I. Petrova

Institute of Physics, Southern Federal University

Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don

A. N. Reznichenko

Institute of Physics, Southern Federal University

Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don

A. N. Rybyanets

Institute of Physics, Southern Federal University

Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don

References

  1. Zhao D., Lenz T., Gelinck G.H. et al. // Nature Commun. 2019. V. 10. No. 6. Art. No. 2547.
  2. IEEE Standard on piezoelectricity. ANSI/IEEE Std. 176-1987. New York: IEEE 1987. 176 p.
  3. Kwok K.W., Chan H.L.W., Choy C.L. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1997. V. 44. No. 4. P. 733.
  4. Esin A.A., Alikin D.O., Turygin A.P. et al. // J. Appl. Phys. 2017. V. 121. No. 7. Art. No. 074101.
  5. Turygin A.P., Alikin D.O., Abramov A.S. et al. // Ferroelectrics. 2017. V. 508. No. 1. P. 77.
  6. Rybianets A. Motsarenko T., Goland V., Kushkuley L. // Proc. USE2007 (Tsukuba, 2007). P. 1909.
  7. Швецов И.А., Луговая М.А., Швецова Н.А. и др. // Письма в ЖТФ. 2020. Т. 46. № 8. С. 14; Shvetsov I.A., Lugovaya M.A., Shvetsova N.A. et al. // Tech. Phys. Lett. 2020. V. 46 No. 4. P. 368.
  8. Shvetsova N.A., Shcherbinin S.A., Shvetsov I.A. et al. // Ferroelectrics. 2021. V. 576. No. 1. P. 100.
  9. https://www.tasitechnical.com/prap.
  10. Konstantinov G.M. Rybyanets A.N., Konstantinova Y.B. et al. // In: Advanced materials: manufacturing, physics, mechanics and applications. N.Y.: Springer Proc. Phys, 2016. P. 229.
  11. Berlincourt D.A., Curran D.R., Jaffe H. Physical acoustics. N.Y.: Academic Press, 1964. P. 169.
  12. Shen L.C., Kong J.A. Applied electromagnetism. Boston: PWS Engineering, 1983.
  13. Rybyanets A.N., Chang S.-H., Theerakulpisut S. // In: Advanced materials – studies and applications. N.Y.: Nova Science Publishers Inc., 2015. P. 147.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (294KB)
4.

Download (412KB)
5.

Download (191KB)

Copyright (c) 2023 Н.А. Швецова, И.А. Швецов, Е.И. Петрова, А.Н. Резниченко, А.Н. Рыбянец