Three-Airy beams and their autofocusing plane

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The position of the autofocusing plane of three-Airy beams is studied theoretically and experimentally depending on the shift parameter. It is shown that for different values of this parameter, the three-Airy beam may or may not have an autofocusing plane. If the beam has an autofocusing plane, then with increasing absolute value of the shift parameter, the autofocusing plane monotonically moves away from the initial plane.

Full Text

Restricted Access

About the authors

D. V. Prokopova

Lebedev Physical Institute of the Samara Branch of the Russian Academy of Sciences

Author for correspondence.
Email: prokopovadv@lebedev.ru
Russian Federation, Samara

E. G. Abramochkin

Lebedev Physical Institute of the Samara Branch of the Russian Academy of Sciences

Email: prokopovadv@lebedev.ru
Russian Federation, Samara

References

  1. Nye J.F. Natural focusing and fine structure of light. Bristol: IOP, 1999. 328 p.
  2. Siviloglou G.A., Christodoulides D.N. // Opt. Lett. 2007. V. 32. No. 8. P. 979.
  3. Efremidis N.K., Chen Z., Segev M., Christodoulides D.N. // Optica. 2019. V. 6. No. 5. P. 686.
  4. Hu Y., Siviloglou G.A., Peng P. et al. // In: Springer Series in Optical Sciences: Nonlinear Photonics and Novel Optical Phenomena. Springer, 2012. P. 1.
  5. Zhang Y., Zhong H., Belić M.R. et al. // Appl. Sci. 2017. V. 7. No. 4. P. 341.
  6. Tитчмарш Э.Ч. Теория функций. М.: Наука, 1980. 463 c.
  7. Polynkin P., Kolesik M., Moloney J.V. et al. // Science. 2009. V. 324. P. 229.
  8. Polynkin P., Kolesik M., Moloney J. // Phys. Rev. Lett. 2009. V. 103. No. 12. Art. No. 123902.
  9. Vettenburg T., Dalgarno H., Nylk J. et al. // Nature Meth. 2014. V. 11. P. 541.
  10. Nylk J., McCluskey K., Aggarwal S. et al. // Biomed. Opt. Express. 2016. V. 7. No. 10. P. 4021.
  11. Nylk J., McCluskey K., Preciado M.A. et al. // Sci. Advances. 2018. V. 4. Art. No. eaar4817.
  12. Jia S., Vaughan J. C., Zhuang X. // Nature Photonics. 2014. V. 8. P. 302.
  13. Котова С.П., Лосевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1685; Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1434.
  14. Baumgartl J., Mazilu M., Dholakia K. // Nature Photonics. 2008. V. 2. Р. 675.
  15. Suarez R.A.B., Neves A.A.R., Gesualdi M.R.R. // Opt. Laser Techn. 2021. V. 135. Art. No. 106678.
  16. Baumgartl J., Hannappel G.M., Stevenson D.J. et al. // Lab Chip. 2009. V. 9. P. 1334.
  17. Cheng H., Zang W., Zhou W., Tian J. // Opt. Express. 2010. V. 18. No. 19. P. 20384.
  18. Zhao J., Chremmos I., Song D. et al. // Sci. Reports. 2015. V. 5. Art. No. 12086.
  19. Zheng Z., Zhang B., Chen H. et al. // Appl. Opt. 2011. V. 50. No 1. P. 43.
  20. Mathis A., Courvoisier F., Froehly L. et al. // Appl. Phys. Lett. 2012. V. 101. No. 7. Art. No. 071110.
  21. Manousidaki M., Papazoglou D.G., Farsari M., Tzortzakis S. // Optica. 2016. V. 3. P. 525.
  22. Белоненко М.Б., Конобеева Н.Н. // Изв. РАН. Сер. физ. 2022. Т. 86. № 1. С. 63; Belonenko M.B., Konobeeva N.N. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 1. P. 42.
  23. Двужилова Ю.В., Двужилов И.С., Челнынцев И.А. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 6. С. 797; Dvuzhilova Y.V., Dvuzhilov I.S., Chelnyntsev I.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 6. P. 669.
  24. Брянцев Б.С., Калинович А.А., Захарова И.Г. // Изв. РАН. Сер. физ. 2021. Т. 85. № 1. С. 28; Bryantsev B.S., Kalinovich A.A., Zakharova I.G. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 1. P. 669.
  25. Efremidis N.K., Christodoulides D.N. // Opt. Lett. 2010. V. 35. No. 23. P. 4045.
  26. Mansour D., Christodoulides D.N. // OSA Continuum. 2018. V. 1. No. 1. P. 104.
  27. Abramochkin E., Razueva E. // Opt. Lett. 2011. V. 36. No. 19. P. 3732.
  28. Liang Y., Ye Z., Song D. et al. // Opt. Express. 2013. V. 21. No. 2. P. 1615.
  29. Liang Y., Chen Y., Wan L. // Opt. Commun. 2017. V. 40. P. 120.
  30. Izdebskaya Y.V., Lu T.H., Neshev D.N., Desyatnikov A.S. // Appl. Opt. 2014. V. 53. No. 10. Art. No. B248.
  31. Прокопова Д.В., Абрамочкин Е.Г. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1688; Prokopova D.V., Abramochkin E.G. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1773.
  32. Гудмен Дж.В. Введение в фурье-оптику. М.: Мир, 1970. 362 с.
  33. Афанасьев К.Н., Кишкин С.А. // Изв. Самар. научн. центра РАН. 2012. Т. 14. № 4. C. 184.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Left: intervals in θ for which there exists a solution φ(θ) of equation (15), right: caustics that are obtained from formulae (13) at Z = 2. The enlarged fragment of the centre section shows the presence of a caustic point, which is present only in the autofocus plane

Download (149KB)
3. Fig. 2. Plot of the beam intensity dependence Ai3(x, y, a) on the z axis (i.e., at x = y = 0) during propagation in the Fresnel zone for the case when the bias parameter is a = 3-2/3a'100 = -28 966. The asymptotic formula (14) gives the value zs = 14.35; from the numerical experiment we obtain zs = 15.012

Download (98KB)
4. Fig. 3. Schematic diagram of the experimental setup

Download (115KB)
5. Fig. 4. Experimentally obtained intensity distributions of tri-Eiri beams with different values of the bias parameter at different distances expressed in units of focal length F = 500 mm. The frame side size is 1 mm for a‘1 × 3-2/3 = -0.489 and a1 × 3-2/3 = -1.124, and is 2 mm for a’3 × 3-2/3 = -2.317, a3 × 3-2/3 = -2.654, a'5 × 3-2/3 = -3.545, and a5 × 3-2/3 = -3.819

Download (400KB)

Copyright (c) 2024 Russian Academy of Sciences