Modeling the UT effect of zonal-averaged perturbations in the parameters of the upper atmosphere for the example of a geomagnetic storm in march 2015

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the Global Self-Consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP), we previously gave an interpretation of the ionospheric effects of the March 2015 geomagnetic storm, identified and analyzed the positive aftereffects. Further analysis of the numerical simulation results showed that the positive aftereffects manifest themselves differently in different longitudinal sectors. This paper presents the results of studying the dependence of disturbances in the parameters of the upper atmosphere on the time of the onset of a geomagnetic storm in UT. For this, additional calculations of geomagnetic storms were carried out, identical to the considered storm in March 2015, which began on March 17 at 12 UT, with a start time of the geomagnetic storm shifted by 00, 06, and 18 UT. It is shown that for the family of storms under consideration, the effects of the thermosphere wind are significant in the formation of NmF2 disturbances in the main phase of the storm. The mechanism for the formation of ionospheric aftereffects in the form of positive NmF2 disturbances are n(O)/n(N2) disturbances at heights F of the ionospheric region.

Full Text

Restricted Access

About the authors

K. V. Belyuchenko

Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences; Kaliningrad Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Author for correspondence.
Email: kdei@list.ru
Russian Federation, Irkutsk; Kaliningrad

M. V. Klimenko

Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences; Kaliningrad Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Email: kdei@list.ru
Russian Federation, Irkutsk; Kaliningrad

V. V. Klimenko

Kaliningrad Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Email: kdei@list.ru
Russian Federation, Kaliningrad

K. G. Ratovsky

Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences

Email: kdei@list.ru
Russian Federation, Irkutsk

References

  1. Mayr H.G., Harris I., Spencer N.W. // Rev. Geophys. 1978. V. 16. No. 4. P. 539.
  2. Buonsanto M.J. // Space Sci. Rev. 1999. V. 88. No. 3-4. P. 563.
  3. Immel T.J., Mannucci A.J. // J. Geophys. Res. Space Phys. 2013. V. 118. No. 12. P. 7928.
  4. Ratovsky K.G., Klimenko M.V., Yasyukevich Y.V. et al. // Atmosphere. 2020. V. 11. No. 12. P. 1308.
  5. Klimenko M.V., Klimenko V.V., Despirak I.V. et al. // J. Atmos. Solar-Terr. Phys. 2018. V. 180. P. 78.
  6. Ратовский К.Г., Клименко М.В., Клименко В.В. и др. // Солн.-земн. физ. 2018. Т. 4. № 4. P. 32; Ratovsky K.G., Klimenko M.V., Klimenko V.V. et al. // Solar-Terr. Phys. 2018. V. 4. No. 4. P. 26.
  7. Borries C., Berdermann J., Jakowski N., Wilken V. // J. Geophys. Res. Space Phys. 2015. V. 120. No. 4. P. 3175.
  8. Greer K.R., Immel T., Ridley A. // J. Geophys. Res. Space Phys. 2017. V. 122. No. 4. P. 4512.
  9. Liu W., Xu L., Xiong C., Xu J. // Adv. Space Res. 2017. V. 59. No. 2. P. 603.
  10. Шпынев Б.Г., Золотухина Н.А., Полех Н.М. и др. // Совр. пробл. дист. зонд. Земли из космоса. 2017. Т. 14. №. 4. С. 235.
  11. Chang L.C., Liu J.Y., Palo S.E. // J. Geophys. Res. Space Phys. 2011. V. 116. Art. No. A10.
  12. Dmitriev A.V., Suvorova A.V., Klimenko M.V. et al. // J. Geophys. Res. Space Phys. 2017. V. 122. No. 2. P. 2398.
  13. Klimenko M.V., Zakharenkova I.E., Klimenko V.V. et al. // Space Weather. 2019. V. 17. No. 7. P. 1073.
  14. Белюченко К.В., Клименко М.В., Клименко В.В., Ратовский К.Г. // Солн.-земн. физ. 2022. Т. 8. № 3. С. 41; Belyuchenko K.V., Klimenko M.V., Klimenko V.V., Ratovsky K.G. // Solar-Terr. Phys. 2022. V. 8. No. 3. P. 38.
  15. Vorobjev V.G., Yagodkina O.I. // JASTP. 2008. V. 70. No. 2—4. P. 654.
  16. Feshchenko E.Yu., Maltsev Yu.P. // Proc. XXVI Ann. Sem. “Physics of Auroral Phenomena” (Apatity, 2003). P. 59.
  17. Sojka J.J., Schunk R.W., Denig W.F. // J. Geophys. Res. Space Phys. 1994. V. 99. No. A11. P. 21341.
  18. Prölss G.W. // Rev. Geophys. 1980. V. 18. No. 1. P. 183.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Variations of the geomagnetic activity indices AE and AL for the time-shifted moments of storm onset, from top to bottom for 00 UT, 06 UT, 12 UT, 18 UT, respectively

Download (375KB)
3. Fig. 2. Latitude-time maps of zonal-averaged NmF2 disturbances for storms with onset times 00, 06, 12, 18 UT. White lines highlight the main phase of the storm

Download (520KB)
4. Fig. 3. Same as in Fig. 2 for perturbations Tn

Download (477KB)
5. Fig. 4. Same as in Fig. 2 for VnΘ perturbations (the positive direction is chosen towards the equator)

Download (617KB)
6. Fig. 5. Same as in Fig. 2 for perturbations n(O)/n(N2)

Download (527KB)

Copyright (c) 2024 Russian Academy of Sciences