On the possibility of experiments on the excitation of artificial ultra-low and extra-low frequency emissions in the ionosphere by the FENICS installation on the Kola peninsula

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A numerical model has been developed to calculate the electromagnetic response in the ionosphere from grounded ultra-low-frequency transmitters of finite length L. Such megatransmitters are the ZEVS installation with a carrier frequency of 82 Hz and the FENICS installation, which can generate artificial emissions at frequencies from fractions of a Hz to a few hundreds of Hz. The amplitude of radiation excited in the upper ionosphere by a grounded horizontal current suspended above a high-resistance earth’s surface has been calculated. The altitude profile of the plasma parameters was reconstructed using the IRI ionospheric model. For the ZEVS transmitter (L = 60 km) powered by a current of 200 A, the simulated amplitudes of the electromagnetic response in the nighttime ionosphere can reach ~60 μV/m, which was confirmed by observations on the DEMETER satellite. According to calculations, the FENICS facility (L = 100 km), powered by a current of 100 A, can generate radiation in the nighttime upper ionosphere with a frequency of 10—100 Hz and an amplitude of up to ~60—70 μV/m. The FENICS facility can be used to excite artificial Pc1 pulsations that could be detected on low-Earth-orbit satellites (e.g., CSES). To create pulsations in the nighttime ionosphere at a frequency of 0.5 Hz with the amplitudes of the magnetic component >1 pT and the electric component >10 μV/m, the current in the FENICS antenna is to be >100 A.

Full Text

Restricted Access

About the authors

V. A. Pilipenko

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Institute of Space Research of the Russian Academy of Sciences

Author for correspondence.
Email: space.soliton@gmail.com
Russian Federation, Moscow; Moscow

N. G. Mazur

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: space.soliton@gmail.com
Russian Federation, Moscow

E. N. Fedorov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: space.soliton@gmail.com
Russian Federation, Moscow

A. N. Shevtsov

Institute of Geology of the Kola Scientific Center of the Russian Academy of Sciences

Email: space.soliton@gmail.com
Russian Federation, Apatity

References

  1. Rothkaehl H., Parrot M. // J. Atm. Solar-Terr. Phys. 2005. V. 67. P. 821.
  2. Жамалетдинов А.А., Шевцов А.Н., Велихов Е.П. и др. // Изв. РАН. Физ. атм. и океана. 2015. T. 51. C. 826; Zhamaletdinov A.A., Shevtsov A.N., Velikhov E.P. et al. // Izv. Atm. Ocean. Phys. 2015. V. 51. P. 826.
  3. Любчич В.А. // Изв. РАН. Сер. физ. 2021. Т. 85. № 3. С. 378; Lyubchich V.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 3. P. 268.
  4. Nemec F., Parrot M., Santolik O. // J. Geophys. Res. 2015. V.120. P. 8954.
  5. Пилипенко В.А., Федоров Е.Н., Мазур Н.Г., Климов С.И. // Солн.-земн. физ. 2021. Т. 7. № 3. С. 3; Pilipenko V.A., Fedorov E.N., Mazur N.G., Klimov S.I. // Solar-Terr. Phys. 2021. V. 7. No. 3. P. 105.
  6. Терещенко Е.Д., Терещенко П.Е. // ЖТФ. 2017. Т. 87. C. 453; Tereshenko E.D., Tereshenko P.E. // J. Tech. Phys. 2017. V. 87. P. 453.
  7. Терещенко Е.Д., Терещенко П.Е., Сидоренко А.Е. и др. // ЖТФ. 2018. Т. 88. № 6. С. 907; Tereshchenko E.D., Tereshchenko P.E., Sidorenko A.E. et al. // J. Tech. Phys. 2018. V. 88. No. 6. P. 907.
  8. Ермакова Е.Н., Рябов А.В., Котик Д.С. // Изв. вузов. Радиофиз. 2021. Т. 64. № 3. С. 163; Ermakova E.N., Ryabov A.V., Kotik D.S. // Radiophys. Quant. Electron. 2021. V. 64. No. 3. P. 163.
  9. Fedorov E.N., Mazur N.G., Pilipenko V.A., Vakhnina V.V. // Radio Sci. 2020. V. 55. Art. No. e2019RS006943.
  10. Fedorov E.N., Mazur N.G., Pilipenko V.A. // J. Geophys. Res. 2021. V. 126. Art. No. e2021JA029659.
  11. Федоров Е.Н., Мазур Н.Г., Пилипенко В.А. // Изв. вузов. Радиофиз. 2022. Т. 65. № 9. С. 697; Fedorov E.N., Mazur N.G., Pilipenko V.A. // Radiophys. Quant. Electron. 2023. V. 65. No. 9. P. 697.
  12. Baños A. Dipole radiation in the presence of a conducting half-space. N.Y.: Pergamon, 1966. 263 p.
  13. King R.W.P., Smith G.S., Owens M., Wu T.T. Antennas in matter. Fundamentals, theory and applications. Ch. 11. Cambridge: The MIT Press, 1981.
  14. Собчаков Л.А., Астахова Н.Л., Поляков С.В. // Изв. вузов. Радиофиз. 2003. Т. 46. № 12. С. 1027; Sobchakov L.A., Astakhova N.L., Polyakov S.V. // Radiophys. Quant. Electron. 2003. V. 46. No. 12. P. 1027.
  15. Гинзбург В.Л. Распространение электромагнитных волн в плазме. М.: Наука, 1967. 685 с; Ginzburg V.L. Propagation of radiowaves in plasm. Pergamon Press, 1970. 615 p.
  16. Pilipenko V.A., Parrot M., Fedorov E.N., Mazur N.G. // J. Geophys. Res. 2019. V. 124. No. 10. P. 8066.
  17. Беляев П.П., Поляков С.В., Ермакова Е.Н. и др. // Изв. вузов. Радиофиз. 2002. Т. 45. № 2. С. 156; Belyaev P.P., Polyakov S.V., Ermakova E.N. et al. // Radiophys. Quant. Electron. 2002. V. 45. No. 2. P. 156.
  18. Грач В.С., Демехов А.Г. // Изв. вузов. Радиофиз. 2017. Т. 60. № 12. С. 1052; Grach V.S., Demekhov A.G. // Radiophys. Quant. Electron. 2017. V. 60. No. 12. P. 1052.
  19. Guo Z., Fang H., Honary F. // Universe. 2021. V. 7. P. 29.
  20. Пилипенко В.А., Полозова Т.Л., Энгебретсон М. // Косм. иссл. 2012. Т. 50. № 5. C. 355; Pilipenko V.A., Polozova T.L., Engebretson М. // Cosmic Res. 2012. V. 50. No. 5. P. 355.
  21. Boerner D.E. // Surv. Geophys. 1992. V. 13. P. 435.
  22. Ermakova E.N., Kotik D.S., Polyakov S.V. et al. // J. Geophys. Res. 2006. P. 111.
  23. Поляков С.В. // Изв. вузов. Радиофиз. 2008. Т. 51. № 12. С. 1026; Polyakov S.V. // Radiophys. Quant. Electron. 2008. V. 51. No. 12. P. 1026.
  24. Пилипенко В.А. // В сб. “Триггерные эффекты в геосистемах”. М.: ГЕОС, 2013. C. 318.
  25. Гульельми А.В., Зотов О.В. // Физика Земли. 2012. № 6. С. 23; Guglielmi A.V., Zotov O.V. // Phys. Solid Earth. 2012. No. 6. P. 23.
  26. Diego P., Huang J., Piersanti M. et al. // Instruments. 2021. V. 5. No. 1. P. 1.
  27. Dudkin F., Korepanov V., Dudkin D. et al. // Geophys. Res. Lett. 2015. V. 42. P. 5686.
  28. Wu J., Wang Z., Zhang J. et al. // Earth Planets Space. 2023. No. 1. P. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Illustration of the transition from a real source with a current suspended above ground and grounded at the ends to a model source with a buried current. Quasidipole current lines are shown for depths less than δg

Download (174KB)
3. Fig. 2. Spatial structure in the direction across the current source of the amplitude of the electrical component |Ex(y)| of the FENICS system radiation at frequencies from 3 to 50 Hz at an altitude of 500 km. The conductivity of the Earth is σg = 10-5 cm/m. All curves correspond to the emitter scale L = 100 km. Also, the dashed line shows the amplitude of the electric field at 82 Hz excited by the ZEVS transmitter (L = 60 km)

Download (110KB)
4. Fig. 3. Spatial structure of the amplitude amplitude of the electrical components |Ex(y)|, |Ey(y)| of the FENICS system radiation in the direction across the current line at an altitude of 500 km. Earth conductivity σg = 10-5 cm/m, length L = 100 km, frequency - 0.5 Hz

Download (105KB)
5. Fig. 4. Spatial structure of the amplitude of the magnetic components |Bx(y)|, |By(y)|, |Bz(y)| of the FENICS system radiation in the direction across the current line at an altitude of 500 km. Earth conductivity σg = 10-5 cm/m, length L = 100 km, frequency - 0.5 Hz

Download (119KB)

Copyright (c) 2024 Russian Academy of Sciences