Generation of optical-terahertz solitons by a few-cycle laser pulse

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The generation of broadband terahertz radiation using an extremely short laser pulse of high intensity is considered. Using numerical simulation of the generalized Yajima-Oikawa system, it is shown that in the generation of an optical-terahertz soliton, in contrast to the quasi-monochromatic case, Kerr nonlinearity plays an important role for a low-period pulse, considering its dispersion.

Full Text

Restricted Access

About the authors

А. А. Kalinovich

Lomonosov Moscow State University

Author for correspondence.
Email: kalinovich@gmail.com
Russian Federation, Moscow

S. V. Sazonov

Lomonosov Moscow State University; National Research Centre “Kurchatov Institute”; Moscow Aviation Institute (National Research University)

Email: kalinovich@gmail.com
Russian Federation, Moscow; Moscow; Moscow

References

  1. Peiponen K.-E., Zeitler A., Kuwata-Gonokami A. Terahertz spectroscopy and imaging. Berlin, Heidelberg: Springer, 2013.
  2. Smirnov S.V., Grachev Ya.V., Tsypkin A.N. et al. // J. Opt. Technol. 2014. V. 81. No. 8. P. 464.
  3. Абдулин У.А., Ляхов Г.А., Руденко О.В., Чиркин А.С. // ЖЭТФ. 1974. Т. 66. № 4. С. 1295; Abdullin U.A., Lyakhov G.A., Rudenko O.V., Chirkin A.S. // Sov. Phys. JETP. 1974. V. 66. No. 4. P. 633.
  4. Багдасарян Б.А., Макарян А.О., Погосян П.С. // Письма в ЖЭТФ. 1983. Т. 37. С. 498; Bagdasaryan B.A., Makaryan A.O., Pogosyan P.S. // JETP Lett. 1983. V. 37. P. 594.
  5. Auston D.H., Cheung K.P., Valdmanis J.A. et al. // Phys. Rev. Lett. 1984. V. 53. P. 1555.
  6. Захаров В.E. // ЖЭТФ. 1972. Т. 62. № 5. С. 1745; Zakharov V.E. // Sov. JETP. 1972. V. 62. No. 5. P. 908.
  7. Benney D.J. // Studies Appl. Math. 1977. V. 56. No. 1. P. 81.
  8. Eilbeck J.C., Gibbon J.D., Caudrey P.J. et al. // J. Phys. A. Math. Nucl. Gen. 1973. V. 6. P. 1337.
  9. Yajima N., Oikawa M. // Progr. Theor. Phys. 1976. V. 56. No. 6. P. 1719.
  10. Сазонов С.В., Соболевский А.Ф. // Письма в ЖЭТФ. 2002. Т. 75. № 12. С. 746; Sazonov S.V., Sobolevskii A.F. // JETP Lett. 2002. V. 75. No. 12. P. 746.
  11. Бугай А.Н., Сазонов С.В. // Письма в ЖЭТФ. 2008. Т. 87. № 8. С. 470; Bugai A.N., Sazonov S.V. // JETP Lett. 2008. V. 87. No. 8. P. 470.
  12. Hattori T., Takeuchi K. // Opt. Express. 2007. V. 15. P. 8076.
  13. Степанов А.Г., Мельников А.А., Компанец В.О., Чикалин С.В. // Письма в ЖЭТФ. 2007. Т. 85. № 5. С. 279; Stepanov A.G., Mel’nikov A.A., Kompanets V.O., Chekalin S.V. // JETP Lett. 2007. V. 85. No. 5. P. 279.
  14. Leblond H., Mihalache D. // Phys. Reports. 2013. V. 523. No. 2. P. 61.
  15. Brabec T., Krausz F. // Rev. Modern Phys. 2000. V. 71. P. 545.
  16. Krausz F., Ivanov M. // Rev. Modern Phys. 2009. V. 81. P. 163.
  17. Козлов С.А., Сазонов С.В. // ЖЭТФ. 1997. Т. 111. № 2. С. 404; Kozlov S.A., Sazonov S.V. // JETP. 1997. V. 111. No. 2. P. 221.
  18. Сазонов С.В., Сухоруков А.П., Устинов Н.В. // Письма в ЖЭТФ. 2014. Т. 100. № 10. С. 703; Sazonov S.V., Sukhorukov A.P., Ustinov N.V. // JETP Lett. 2014. V. 100. No. 10. P. 703.
  19. Калинович А.А., Захарова И.Г., Сазонов С.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1678; Kalinovich A.A., Zakharova I.G., Sazonov S.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1427.
  20. Сазонов С.В., Сухоруков А.П. // Письма в ЖЭТФ. 2013. Т. 98. № 12. С. 871; Sazonov S.V., Sukhorukov A.P. // JETP Lett. 2013. V. 98. No. 12. P. 871.
  21. Розанов Н.Н. // Опт. и спектроск. 2009. Т. 107. № 5. P. 761; Rosanov N.N. // Opt. Spectrosc. 2009. V. 107. No. 5. P. 721.
  22. Розанов Н.Н. Диссипативные оптические солитоны. От микро- к нано- и атто-. М.: Физматлит, 2011.
  23. Nikogosyan D.N. Nonlinear optical crystals: a complete survey. Berlin: Springer, 2005.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Peak intensities (a) of the optical (solid line) and terahertz (dashed line) components, profiles of the optical (red) and terahertz (blue) components at different distances (b, c, d). Initial amplitude Ψ0 = 1, second- and third-order dispersion coefficients Dk2 = 0.5, Dk3 = 0.5, dispersion of the oscillatory nature of the terahertz signal g = 10–5, quadratic and cubic nonlinearities Dσ = 1, p = 0, number of oscillations N = 10.

Download (313KB)
3. Fig. 2. Similar to Fig. 1, with the same parameters, except p = –1.

Download (299KB)
4. Fig. 3. Peak intensities (a) of the optical (solid line) and terahertz (dashed line) components, profiles of the optical (red) and terahertz (blue) components at different distances (b, c, d). Initial amplitude Ψ0 = 1, second- and third-order dispersion coefficients Dk2 = 0.5, Dk3 = 0.5, dispersion of the oscillatory nature of the terahertz signal γ = 10–5, quadratic and cubic nonlinearities Dσ = 1, p = 0, number of oscillations N = 3.

Download (311KB)
5. Fig. 4. Similar to Fig. 3, with the same parameters, except p = –1.

Download (233KB)

Copyright (c) 2024 Russian Academy of Sciences