On the threshold value of the vertical vibrations amplitude causing Faraday ripples on the charged surface of a viscous liquid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the surface electric charge on the regularities of the formation of Faraday ripples on the horizontal surface of a viscous liquid is studied on the base of the approximation of small-amplitude perturbations. The typical horizontal dimensions of the Faraday ripples are established which is most significantly affected by the surface change density and viscosity.

Full Text

Restricted Access

About the authors

D. F. Belonozhko

Demidov Yaroslavl State University

Author for correspondence.
Email: belonozhko@mail.ru
Russian Federation, Yaroslavl

References

  1. Faraday M. // Phil. Trans. Royal Soc. London. 1831. V. 121. P. 209.
  2. Benjamin T.B. // Proc. Royal Soc. London. A. 1954. V. 225. No. 1163. P. 505.
  3. Yuan S., Zhang Y., Gao Y. // Phys. Rev. Fluids. 2022. V. 7. No. 3. Art. No. 033902.
  4. Белоножко Д.Ф. Апарнева А.В. // Динам. сист. 2018. Т. 8(36). № 1. C. 51.
  5. Белоножко Д.Ф., Апарнева А.В. // Учен. зап. физ. фак-та Моск. ун-та. 2017. № 6. С. 1760401.
  6. Карлов Н.В., Кириченко Н.А. Колебания, волны, структуры. М.: Физматлит, 2003. 496 c.
  7. Френкель Я.И. // ЖЭТФ. 1936. Т. 6. № 4. С. 348.
  8. Tonks L. // Phys. Rev. 1935. V. 48. P. 562.
  9. Taylor G.I., McEwan A.D. // J. Fluid Mech. 1965. V. 22. No. 1. P. 1.
  10. Ильин М.М., Колесников К.С., Саратов Ю.С. Теория колебаний. М.: МГТУ им. Н.Э. Баумана, 2001. 272 с.
  11. Любимов Д.В., Любимова Т.П., Черепанов А.А. Динамика поверхности раздела в вибрационных полях. М.: Физматлит, 2003. 216 с.
  12. Пильгунов В.Н., Ефремова К.Д. // Радиостроение. 2020. № 06. С. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Instability zones of the Mathieu equation on the plane of parameters (Ω2, q).

Download (63KB)
3. Fig. 2. Dependence of the dimensionless threshold value of the vertical vibration amplitude a on the dimensionless wave number for the dimensionless viscosity value v = 0.002 and different values ​​of the Tonks-Frenkel parameter: 1 – W = 0; 2 – W = 0.5; 3 – W = 1.0; 4 – W = 1.5; 5 – W = 1.9.

Download (71KB)
4. Fig. 3. Dependencies similar to Fig. 2, but constructed with a dimensionless viscosity value v = 0.02.

Download (75KB)
5. Fig. 4. Dependence of the dimensionless threshold value of the vertical vibration amplitude on the dimensionless viscosity at the dimensionless wave number k = 1 and different values ​​of the Tonks-Frenkel parameter: 1 – W = 0; 2 – W = 0.5; 3 – W = 1.0; 4 – W = 1.5; 5 – W = 1.9.

Download (73KB)

Copyright (c) 2024 Russian Academy of Sciences