Nonlinear excitation of luminescence of wide-gap crystals by femtosecond laser emission

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The features of nonlinear excitation of photoluminescence of wide-gap crystals by femtosecond laser emission have been studied. It has been established that during multiphoton ionization of the intrinsic substance of crystals, the excitation of intrinsic 2pO2– valence photoluminescence has a long-wave threshold. The photoluminescence yield of impurities, excited by the capture of induced band electrons and holes during the nonlinear ionization of a substance, reaches saturation with increasing intensity of femtosecond laser pulses.

Full Text

Restricted Access

About the authors

V. I. Baryshnikov

Irkutsk State Transport University

Author for correspondence.
Email: vibh@rambler.ru
Russian Federation, Irkutsk

O. V. Goreva

Irkutsk State Transport University

Email: vibh@rambler.ru
Russian Federation, Irkutsk

T. А. Kolesnikova

Irkutsk State Transport University

Email: vibh@rambler.ru
Russian Federation, Irkutsk

O. L. Nikonovich

Irkutsk State Transport University

Email: vibh@rambler.ru
Russian Federation, Irkutsk

Yu. A. Murzina

Irkutsk State Transport University

Email: vibh@rambler.ru
Russian Federation, Irkutsk

References

  1. Барышников В.И., Колесникова Т.А. // Опт. и спектроск. 2003. Т. 95. № 4. С. 637; Baryshnikov V.I., Kolesnikova T.A. // Opt. Spectrosc. 2003. V. 95. No. 4. P. 594.
  2. Барышников В.И., Колесникова Т.А., Дорохов С.В. // Неорг. матер. 1998. Т. 34. № 8. С. 990; Baryshnikov V.I., Kolesnikova T.A., Dorokhov S.V. // Inorg. Mater. 1998. V. 34. No. 8. P. 827.
  3. Чекалин С.В. // УФН. 2006. Т. 176. № 6. С. 657; Chekalin S.V. // Phys. Usp. 2006. V. 49. No. 6. P. 634.
  4. Барышников В.И., Суханова Ю.А., Колесникова Т.А., Никонович О.Л. // Изв. РАН. Сер. физ. 2022. Т. 86. № 7. С. 944; Baryshnikov V.I., Sukhanova Yu.A., Kolesnikova T.A., Nikonovich O.L. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 7. P. 787.
  5. Бондарев М.А., Иванов А.В., Перлин Е.Ю. // Опт. и спектроск. 2012. Т. 112. № 1. С. 109; Bondarev M.A., Ivanov A.V., Perlin E. Yu. // Opt. Spectrosc. 2012. V. 112. No. 1. P. 106.
  6. Барышников В.И., Колесникова Т.А. // ФТТ. 2005. Т. 47. № 10. C. 1776; Baryshnikov V.I., Kolesnikova T.A. // Phys. Solid State. 2005. V. 47. No. 10. P. 1847.
  7. Халяпин В.А., Бугай А.Н. // Изв. РАН. Сер. физ. 2022. Т. 86. № 1. С. 29; Khalyapin V.A., Bugay A.N. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 1. P. 13.
  8. Барышников В.И., Горева О.В., Григорьева Ю.А., Никонович О.Л. // Опт. и спектроск. 2019. Т. 126. № 3. С. 336; Baryshnikov V.I., Goreva O.V., Grigor'eva Y.A., Nikonovich O.L. // Opt. Spectrosc. 2019. V. 126. No. 3. P. 257.
  9. Семашко В.В. // ФТТ. 2005. Т. 47. № 8. С. 1450; Semashko V.V. // Phys. Solid State. 2005. V. 47. No. 8. P. 1507.
  10. Ахтямов О.Р., Низамутдинов А.С., Семашко В.В. и др. // Изв. вузов. Физика. 2013. Т. 56. № 2/2. С. 39.
  11. Ржанов А.Г. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. С. 588; Rzhanov A.G. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 510.
  12. Chen Q., Li Z., Chen K. et al. // Opt. Express. 2016. V. 24. No. 15. P. 16695.
  13. Барышников В.И., Колесникова Т.А. Способ наносекундной микродозовой рентгеновской диагностики. Патент РФ № 2619852, кл. G01N23/04. 2017.
  14. Барышников В.И., Болондзь А.В. // Изв. вузов. Физика. 2011. Т. 54. № 2/2. С. 53.
  15. Pantelides S.T. // Phys. Rev. B. 1975. V. 11. No. 12. P. 5082.
  16. Барышников В.И., Щепина Л.И., Колесникова Т.А., Мартынович Е.Ф. // ФТТ. 1990. Т. 32. № 6. С. 1888; Baryshnikov V.I., Shchepina L.I., Kolesnikova T.A., Martynovich E.F. // Sov. Phys. Solid State. 1990. V. 32. No. 6. P. 1103.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Spectrogram (a) and single-pulse spectrum of Ce3+ PL and valence 2pO2– PL in nominally pure Y3Al5O12 crystals at 300 K (b). Excitation of 2ω: Ti:Sp laser: λ = 390 nm; 50 fs; 0.1 GW cm–2. Registration: delay 5 ns, exposure 100 ns. Steady-state optical absorption spectrum (c).

Download (127KB)
3. Fig. 2. Oscillogram of PL pulses of nominal purity Y3Al5O12 crystals at 300 K: valence 2pO2– in the band at 380 nm (1) and Ce3+ at 530 nm (2), excited by radiation of a 2ω: Ti:Sp laser (400 nm; 50 fs; 80 MHz; 0.1 GW cm–2).

Download (307KB)
4. Fig. 3. Spectrogram (1) and spectrum (2) of the valence 2pO2– PL of a high-purity Al2O3 crystal under four-photon excitation by a 2ω: Ti:Al2O3 laser (50 fs; 360 nm; 1.5 GW cm–2). Registration: delay 5 ns, exposure 10 ns. Spectrum of four-photon excitation of 2pO2– PL (3). On the left is the structure of the valence 2pO2– band and the mechanism of nonlinear excitation of 2pO2– valence PL.

Download (207KB)
5. Fig. 4. Dependence of the yield of valence 2pO2– PL in Y3Al5O12 (1) and Ce3+ PL in Y3Al5O12 (2), Ce:YAlO3 (3) at 300 K on the excitation intensity of 2ω:Ti:Sp laser radiation: λ = 360 nm, 50 fs. Crystals of nominal purity.

Download (74KB)

Copyright (c) 2024 Russian Academy of Sciences