Experimental study of the proximity effect in thin-film heterostructures with varying thickness of the superconducting lead layer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Systematic studies of the proximity effect of superconductor/normal metal, superconductor/antiferromagnet and superconductor/ferromagnet in structures with varying thickness of the superconducting lead layer have been carried out. It has been shown that in these systems the behavior of the superconducting transition temperature Tc with decreasing thickness of the superconducting layer is different. For superconductor/antiferromagnet structures, within the limits of the studied lead layer thicknesses, changes in Tc are insignificant. As the lead layer thickness decreases, the electrical resistance ratio RRR (R300K/R10K) decreases significantly, which may indicate an increase in the contribution of surface defects. The width of superconducting transitions increases with decreasing thickness of the lead layer, which indicates the manifestation of size effects.

Full Text

Restricted Access

About the authors

А. А. Kаmаshev

Zаvоisky Physiсаl-Teсhniсаl Institute, Federal Research Сenter Kаzаn Sсientifiс Сenter оf the Russian Аcademy of Sciences

Author for correspondence.
Email: kаmаndi@mаil.ru
Russian Federation, Kаzаn

A. A. Validov

Zаvоisky Physiсаl-Teсhniсаl Institute, Federal Research Сenter Kаzаn Sсientifiс Сenter оf the Russian Аcademy of Sciences

Email: kаmаndi@mаil.ru
Russian Federation, Kаzаn

D. А. Arbuzov

Zаvоisky Physiсаl-Teсhniсаl Institute, Federal Research Сenter Kаzаn Sсientifiс Сenter оf the Russian Аcademy of Sciences

Email: kаmаndi@mаil.ru
Russian Federation, Kаzаn

N. N. Garif’yanov

Zаvоisky Physiсаl-Teсhniсаl Institute, Federal Research Сenter Kаzаn Sсientifiс Сenter оf the Russian Аcademy of Sciences

Email: kаmаndi@mаil.ru
Russian Federation, Kаzаn

I. A. Gаrifullin

Zаvоisky Physiсаl-Teсhniсаl Institute, Federal Research Сenter Kаzаn Sсientifiс Сenter оf the Russian Аcademy of Sciences

Email: kаmаndi@mаil.ru
Russian Federation, Kаzаn

References

  1. Ioffe L.B., Geshkenbein V.B., Feigel’man M.V. et al. // Nature. 1999. V. 398. No. 6729. P. 679.
  2. Фейгельман М.В. // УФН. 1999. Т. 169. № 8. С. 917; Feigel’man M.V. // Phys. Usp. 1999. V. 42. No. 8. P. 823.
  3. Рязанов В.В. // УФН. 1999. Т. 169. № 8. С. 920; Ryazanov N.N. // Phys. Usp. 1999. V. 42. No. 8. P. 825.
  4. Ryazanov V.V., Oboznov V.A., Veretennikov A.V., Rusanov A.Yu. // Phys. Rev. B. 2001. V. 65. Art. No. 020501.
  5. Veretennikov A.V., Ryazanov V.V., Oboznov V.A. et al. // Physica B. 2000. V. 284—288. P. 495.
  6. Ryazanov V.V., Oboznov V.A., Rusanov A. Yu. et al. // Phys. Rev. Lett. 2001. V. 86. P. 2427.
  7. Kontos T., Aprili M., Lesueur J., Grison X. // Phys. Rev. Lett. 2002. V. 89. P. 137007.
  8. Рязанов В.В., Обознов В.А., Больгинов В.В. и др. // УФН. 2004. Т. 174. № 7. С. 795; Ryazanov V.V., Oboznov V.A., Bol’ginov V.V. et al. // Phys. Usp. 2004. V. 47. No. 7. P. 732.
  9. Lazar L., Westerholt K., Zabel H. et al. // Phys. Rev. B. 2000. V. 61. P. 3711.
  10. Изюмов Ю.А., Прошин Ю.Н., Хусаинов М.Г. // УФН. 2002. Т. 172. № 2. С. 113; Izyumov Yu. A., Proshin Yu. N., Khusainov M.G. // Phys. Usp. 2002. V. 45. No. 2. P. 109.
  11. Buzdin A.I. // Rev. Mod. Phys. 2005. V. 77. P. 935.
  12. Bergeret F.S., Volkov A.F., Efetov K.B. // Rev. Mod. Phys. 2005. V. 77. P. 1321.
  13. Efetov K.B., Garifullin I.A., Volkov A.F., Westerholt K. // Magnetic heterostructures. Advances and perspectives in spinstructures and spintransport. STMP. V. 227. Berlin: Springer, 2007. P. 252.
  14. Oh S., Youm D., Beasley M.R. // Appl. Phys. Lett. 1997. V. 71. P. 2376.
  15. Tagirov L.R. // Physica C. 1998. V. 307. P. 145.
  16. Buzdin1 A.I., Vedyayev A.V., Ryzhanova N.V. // EPL. 1999. V. 48. P. 686.
  17. Gu J.Y., You C.-Y., Jiang J.S. et al. // Phys. Rev. Lett. 2002. V. 89. Art. No. 267001.
  18. You C.Y., Bazaliy Ya.B., Gu J.Y. et al. // Phys. Rev. B2004. V. 70. Art. No. 014505.
  19. Potenza A., Marrows C.H. // Phys. Rev. B2005. V. 71. Art. No. 180503(R).
  20. Peña V., Sefrioui Z., Arias D. et al. // Phys. Rev. Lett. 2005. V. 94. Art. No. 057002.
  21. Moraru I.C., Pratt Jr. W.P., Birge N.O. // Phys. Rev. Lett. 2006. V. 96. Art. No. 037004.
  22. Miao G.-X., Ramos A.V., Moodera J. // Phys. Rev. Lett. 2008. V. 101. P. 137001.
  23. Leksin P.V., Garif’yanov N.N., Garifullin I.A. et al. // Appl. Phys. Lett. 2010. V. 97. No 10. P. 102505.
  24. Montiel X., Eschrig M. // Phys. Rev. B2018. V. 98. P. 104513.
  25. Banerjee N., Ouassou J.A., Zhu Y. et al. // Phys. Rev. B. 2018. V. 97. P. 184521.
  26. Pugach N.G., Safonchik M.O., Belotelov V.I. et al. // Phys. Rev. Appl. 2022. V. 18. Art. No. 054002.
  27. Leksin P.V., Garif’yanov N.N., Garifullin I.A. et al. // Phys. Rev. Lett. 2012. V. 109. Art. No. 057005.
  28. Leksin P.V., Garif’yanov N.N., Kamashev A.A. et al. // Phys. Rev. B. 2016. V. 93. P. 100502(R).
  29. Leksin P.V., Garif’yanov N.N., Kamashev A.A. et al // Phys. Rev. B. 2015. V. 91. P. 214508.
  30. Камашев А.А., Валидов А.А., Гарифьянов Н.Н., Гарифулин И.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. С. 518; Kamashev A.A., Validov A.A., Garif’yanov N.N., Garifulin I.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 448.
  31. Камашев А.А., Большаков С.А., Мамин Р.Ф., Гарифулин И.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 9. С. 1268; Kamashev A.A., Bolshakov S.A., Mamin R.F., Garifulin I.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 9. P. 1308.
  32. Камашев А.А., Гарифьянов Н.Н., Валидов А.А. и др. // Письма в ЖЭТФ. 2019. Т. 110. № 5—6. С. 325; Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // JETP Lett. 2019. V. 110. No. 5. P. 342.
  33. Камашев А.А., Гарифьянов Н.Н., Валидов А.А. и др. // ЖЭТФ. 2020. Т. 158. № 2. С. 345; Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // JETP. 2020. V. 131. No. 2. P. 311.
  34. Валидов А.А., Насырова М.И., Хабибуллин Р.Р. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. С. 523; Validov A.A., Nasyrova M.I., Khabibullin R.R., Garifullin I.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 452.
  35. Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // Beilstein J. Nanotechnol. 2019. V. 10. P. 1458.
  36. Kamashev A.A., Garif’yanov N.N., Validov A.A. et al. // Phys. Rev. B. 2019. V. 100. Art. No. 134511.
  37. Leksin P.V., Kamashev A.A., Schumann J. et al. // Nano Research 2016. V. 9. P. 1005.
  38. Bobkov G.A., Bobkova I.V., Bobkov A.M., Kamra A. // Phys. Rev. B2022. V. 106. P. 144512.
  39. Pippard A.B. // Rep. Prog. Phys. 1960. V. 23. P. 176.
  40. Clarke J. // J. de Phys. Coll. 1968. V. 29. P. C2-3-C2-16.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structures of the studied samples: series 1 — MgO/Cu(1.5 nm)/Pb(dPb) (a); series 2 — MgO/CoOx(3.5 nm)/Pb(dPb) (b); series 3 — MgO/Cu(1.5 nm)/Fe(5 nm)/Pb(dPb) (c); series 4 — MgO/Pb(dPb) (d).

Download (341KB)
3. Fig. 2. Dependences of the transition temperature to the superconducting state on the thickness of the superconducting lead layer Tc(dPb) for all series of samples.

Download (75KB)
4. Fig. 3. Dependences of the ratio of electrical resistances on the thickness of the superconducting lead layer RRR(dPb) for all series of samples.

Download (67KB)
5. Fig. 4. Dependences of the widths of superconducting transitions on the thickness of the superconducting lead layer δТс(dPb) for all series of samples.

Download (70KB)

Copyright (c) 2024 Russian Academy of Sciences