The study of temperature-induced uniaxial deformations in planar ferromagnetic microparticles by ferromagnetic resonance and probe microscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The planar square nickel microparticles deposited on the surface of single crystals of lithium niobate in the hexagonal phase and potassium-titanyl phosphate was studied. Due to the highly different of thermal expansion coefficients the uniaxial anisotropy is induced in the microparticles when heated or cooled relative to the deposition temperature. The effect of inducing anisotropy was studied using magnetic force microscopy and ferromagnetic resonance. Data obtained from ferromagnetic resonance spectra show that in the ensemble of microparticles the rotation of anisotropy axis by 90° take place when the temperature of the sample’s changes from –10 °C to 60 °C. This is in a good agreement with data about domain structure of an individual microparticle obtained by magnetic force microscopy.

Full Text

Restricted Access

About the authors

N. I. Nurgazizov

Federal Research Сenter Kаzаn Sсientifiс Сenter оf the Russian Аcademy of Sciences

Author for correspondence.
Email: niazn@mail.ru

Zаvоisky Physiсаl-Teсhniсаl Institute

Russian Federation, Kаzаn

D. A. Bizyaev

Federal Research Сenter Kаzаn Sсientifiс Сenter оf the Russian Аcademy of Sciences

Email: niazn@mail.ru

Zаvоisky Physiсаl-Teсhniсаl Institute

Russian Federation, Kаzаn

A. P. Chuklanov

Federal Research Сenter Kаzаn Sсientifiс Сenter оf the Russian Аcademy of Sciences

Email: niazn@mail.ru

Zаvоisky Physiсаl-Teсhniсаl Institute

Russian Federation, Kаzаn

A. А. Bukharaev

Federal Research Сenter Kаzаn Sсientifiс Сenter оf the Russian Аcademy of Sciences; Tatarstan Academy of Sciences

Email: niazn@mail.ru

Zаvоisky Physiсаl-Teсhniсаl Institute

Russian Federation, Kаzаn; Kаzаn

L. V. Bazan

Federal Research Сenter Kаzаn Sсientifiс Сenter оf the Russian Аcademy of Sciences

Email: niazn@mail.ru

Federal Research Сenter Kаzаn Sсientifiс Сenter оf the Russian Аcademy of Sciences

Russian Federation, Kаzаn

V. Ya. Shur

Ural Federal University

Email: niazn@mail.ru

School of Natural Sciences and Mathematics

Russian Federation, Ekaterinburg

А. R. Akhmatkhanov

Ural Federal University

Email: niazn@mail.ru

School of Natural Sciences and Mathematics

Russian Federation, Ekaterinburg

References

  1. Roy K., Bandyopadhyay S., Atulasimha J. // Appl. Phys. Lett. 2011 V. 99. Art. No. 063108.
  2. Barangi M., Mazumder P. // IEEE Nanotechnol. Mag. 2015. V. 9. No 3. P. 15.
  3. Biswas A.K., Bandyopadhyay S., Atulasimha J. // Appl. Phys. Lett. 2014. V. 104. P. 232403.
  4. Atulasimha J., Bandyopadhyay S. // Nanomagnetic and spintronic devices for energy-efficient memory and computing. WILEY, 2016. 352 p.
  5. Бухараев А.А., Звездин А.К., Пятаков А.П., Фетисов Ю.К. // УФН. 2018. Т. 188. С. 1288.; Bukharaev A.A., Zvezdin A.K., Pyatakov A.P., Fetisov Yu.K. // Phys. Usp. 2018. V. 61. P. 1175.
  6. Bandyopadhyay S., Atulasimha J., Barman A. // Appl. Phys. Rev. 2021. V. 8. Art. No. 041323.
  7. Жуков Д.А., Крикунов А.И., Амеличев В.В. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 730; Zhukov D.A., Krikunov A.I., Amelichev V.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 602.
  8. Жуков Д.А., Амеличев В.В., Костюк Д.В., Касаткин С.И. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. С. 1256.; Zhukov D.A., Amelichev V.V., Kostyuk D.V., Kasatkin S.I. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1041.
  9. Ермолаева О.Л., Гусев Н.С., Скороходов Е.В. и др. // ФТТ. 2019. Т. 61. № 9. С. 1623; Ermolaeva O.L., Gusev N.S., Skorokhodov E.V. et al. // Phys. Solid State. 2019. V. 61. P. 1572.
  10. Нургазизов Н.И., Бизяев Д.А., Бухараев А.А. // Изв. РАН. Сер. физ. 2019. T. 83. № 7. С. 897; Nurgazizov N.I., Bizyaev D.A., Bukharaev A.A // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 815.
  11. Нургазизов Н.И., Бизяев Д.А., Бухараев А.А., Чукланов А.П. // ФТТ. 2020. Т. 62. № 9. С. 1503; Nurgazizov N.I., Bizyaev D.A., Bukharaev A.A., Chuklanov A.P. // Phys. Solid State. 2020. V. 62. P. No. 1667.
  12. Finizio S., Foerster M., Buzzi M. et al. // Phys. Rev. Appl. 2014. V. 1. Art. No. 021001.
  13. Zhang Y., Wang Z., Wang Y. et al. // J. Appl. Phys. 2014. V. 115. Art. No. 084101.
  14. Chen A., Zhao Y., Wen Y. et al. // Sci. Advances. 2019. V. 5. Art. No. eaay5141.
  15. Bur A., Wu T., Hockel J. et al. // J. Appl. Phys. 2011. V. 109. P. 123903.
  16. Bizyaev D.A., Bukharaev A.A., Nurgazizov N.I. et al. // Phys. Stat. Sol. Rapid Res. Lett. 2020. Art. No. 2000256.
  17. Бизяев Д.А., Чукланов А.П., Нургазизов Н.И., Бухараев А.А. // Письма в ЖЭТФ. 2023. T. 118. № 7-8. С. 602; Bizyaev D.A., Chuklanov A.P., Nurgazizov N.I., Bukharaev A.A. // JETP Lett. 2023. V. 118. No. 8. P. 591.
  18. Бизяев Д.А., Бухараев А.А., Кандрашкин Ю.Е. и др. // Письма в ЖТФ. 2016. Т. 42. № 20. С. 24.; Bizyaev D.A., Bukhraev A.A., Kandrashkin Yu.E. et al. // Tech. Phys. Lett. 2016. V. 42. No. 10. P. 1034.
  19. Бабичев А.П., Бабушкина Н.А., Братковский А.М. и др. Физические величины: Справочник. М: Энергоатомиздат, 1991. 1232 с. http://math.nist.gov/oommf.
  20. Овчинников Д.В., Бухараев А.А. // ЖТФ. 2001. Т. 71. № 8. С. 85; Ovchinnikov D.V., Bukharayev A.A. // Tech. Phys. 2001. V. 46. P. 1014.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the arrangement of Ni microparticles on single-crystal substrates with anisotropic coefficients of thermal expansion and directions of action of forces: when cooling the sample below (a) and when heating the sample above the temperature of particle formation on the surface of the KTP crystal (b); when cooling the sample below (c) and when heating the sample above the temperature of particle formation on the surface of the CLN crystal (d).

Download (80KB)
3. Fig. 2. FMR spectra of Ni microparticles on KTP at different orientation angles relative to the magnetic field at a temperature of 60 °C (a). Angular dependence of the resonance field in polar coordinates for Ni microparticles on KTP at temperatures (b): –10 °C (dashed curve), +20 °C (solid curve) and +60 °C (curve with dots); the values ​​of the resonance fields for each curve are normalized to the minimum value of the resonance field at a given temperature. Dependences of the eccentricity of the angular deviation of the resonance field on temperature (c). Dependences of the angle of the direction of the axis of thermally induced magnetic anisotropy on temperature (d). 1 — KTP, 2 — CLN, 3 — glass substrate.

Download (458KB)
4. Fig. 3. AFM images of a single Ni microparticle on a KTP substrate formed at (a) room temperature and (b) 60 °C. The scan field size is 11×11 μm. Color gradations correspond to a height span of 35 nm. MFM images of microparticle a, obtained at 30 °C — c, 45 °C — d, 60 °C — e, and the corresponding virtual MFM images — h, i, j; microparticles b, obtained at 30 °C — f, 90 °C — g, and the corresponding virtual MFM images — l, m. Color gradations correspond to a phase span of 0.5°. Dependence of the wall length between two enlarged domains (L) on temperature for samples prepared on KTP — n and CLN — o. Number 1 designates the data for microparticles formed on substrates at room temperature, number 2 — at 60 °C.

Download (473KB)
5. Fig. 4. Dependence of the eccentricity of the angular deviation of the resonance field (e, left ordinate axis) and the reduced length of the wall between two enlarged domains (L, right ordinate axis) on the mechanical stress acting on the microparticle. 1 — points and eccentricity curve for microparticles on a KTP crystal; 2 — points and eccentricity curve for microparticles on a CLN crystal; 3 — bridge length normalized to the microparticle length on a KTP crystal; 4 — bridge length normalized to the microparticle length on a CLN crystal.

Download (77KB)

Copyright (c) 2024 Russian Academy of Sciences